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ABSTRACT

Since the Netflix $1 million Prize, announced in 2006, our
company has been known to have personalization at the core
of our product. Even at that point in time, the dataset that
we released was considered "large”, and we stirred innovation
in the (Big) Data Mining research field. Our current product
offering is now focused around instant video streaming, and
our data is now many orders of magnitude larger. Not only
do we have many more users in many more countries, but we
also receive many more streams of data. Besides the ratings,
we now also use information such as what our members play,
browse, or search.

In this paper, we will discuss the different approaches we
follow to deal with these large streams of data in order to
extract information for personalizing our service. We will
describe some of the machine learning models used, as well
as the architectures that allow us to combine complex offline
batch processes with real-time data streams.

1. INTRODUCTION

Recommender Systems are a prime example of the main-
stream applicability of large scale data mining. Applications
such as e-commerce, search, Internet music and video, gam-
ing or even online dating make use of similar techniques to
mine large volumes of data to better match their users’ needs
in a personalized fashion.

There is more to a good recommender system than the
data mining technique. Issues such as the user interaction
design, outside the scope of this paper, may have a deep
impact on the effectiveness of an approach. But given an
existing application, an improvement in the algorithm can
have a value of millions of dollars. On the other hand, given
an existing method or algorithm, adding more features com-
ing from different data sources can also result in a significant
improvement.

We will start by describing some of the lessons learned
from the Netflix Prize (see Section 2), and then explain the
current use of data, and models at Netflix in section 3. All
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of these Big Data Mining techniques would not be possible
without a proper architecture that is able to leverage large
amounts of data, and scale the computation. In section 4,
I will give an overview of the Netflix architecture that com-
bines offline, nearline, and real-time processing.

2. LESSONS FROM THE NETFLIX PRIZE

In 2006, Netflix announced the Netflix Prize, a machine
learning and data mining competition for movie rating pre-
diction. We offered $1 million to whoever improved the ac-
curacy of our existing system called Cinematch by 10%. We
conducted this competition to find new ways to improve the
recommendations we provide to our members, which is a key
part of our business. However, we had to come up with a
proxy question that was easier to evaluate and quantify: the
root mean squared error (RMSE) of the predicted rating.

The Netflix Prize put the spotlight on Recommender Sys-
tems and the value of user data to generate personalized
recommendations. It did so by providing a crisp problem
definition that enabled thousands of teams to focus on im-
proving a metric. While this was a simplification of the
recommendation problem, there were many lessons learned.

A year into the competition, the Korbell team won the
first Progress Prize with an 8.43% improvement. They re-
ported more than 2000 hours of work in order to come up
with the final combination of 107 algorithms that gave them
this prize. And they gave us the source code. We looked
at the two underlying algorithms with the best performance
in the ensemble: Matrix Factorization (MF) [12] * and Re-
stricted Boltzmann Machines (RBM) [16]. Matrix Factor-
ization by itself provided a 0.8914 RMSE, while RBM alone
provided a competitive but slightly worse 0.8990 RMSE. A
linear blend of these two reduced the error to 0.88. To put
these algorithms to use, we had to work to overcome some
limitations, for instance that they were built to handle 100
million ratings, instead of the more than 5 billion that we
have, and that they were not built to adapt as members
added more ratings. But once we overcame those challenges,
we put the two algorithms into production, where they are
still used as part of our recommendation engine.

One of the most interesting findings during the Netflix
Prize came out of a blog post. Simon Funk introduced an
incremental, iterative, and approximate way to compute the

!The application of Matrix Factorization to the task of rat-
ing prediction closely resembles the technique known as Sin-
gular Value Decomposition used, for example, to identify
latent factors in Information Retrieval. Therefore, it is com-
mon to see people referring to this MF solution as SVD.



SVD using gradient descent [7]. This provided a practical
way to scale matrix factorization methods to large datasets.
Another enhancement to matrix factorization methods was
Koren et. al’s SVD++ [10]. This asymmetric variation en-
ables adding both implicit and explicit feedback, and re-
moves the need for parameterizing the users.

The second model that proved successful was the Re-
stricted Boltzmann Machine (RBM). For the Netflix Prize,
Salakhutditnov et al. proposed an RBM structure with bi-
nary hidden units and softmax visible units with 5 biases
only for the movies the user rated [16].

Many other lessons came out of the Prize. For exam-
ple, the matrix factorization methods mentioned above were
combined with the traditional neighborhood approaches [10].
Also, early in the prize, it became clear that it was important
to take into account temporal dynamics in the user feedback
[11].

Another finding of the Netflix Prize was the realization
that user explicit ratings are noisy. This was already known
in the literature. Herlocker et al.[8] coined the term “magic
barrier” to refer to the limit in accuracy in a recommender
system due to the natural variability in the ratings. This
limit was in fact relatively close to the actual Prize threshold
[3], and might have played a role in why it took so much
effort to squeeze the last fractions of RMSE.

The final Grand Prize ensemble that won the $1M two
years later was a truly impressive compilation and culmina-
tion of years of work, blending hundreds of predictive models
to finally cross the finish line [4]. The way that the final so-
lution was accomplished by combining many independent
models also highlighted the power of using ensembles. At
Netflix, we evaluated some of the new methods included
in the final solution. The additional accuracy gains that
we measured did not seem to justify the engineering effort
needed to bring them into a production environment. Also,
our focus on improving Netflix personalization had by then
shifted from pure rating prediction to the next level. In the
next section, I will explain the different methods and com-
ponents that make up a complete personalization approach
such as the one used by Netflix.

3. NETFLIX PERSONALIZATION:
BEYOND RATING PREDICTION

Netflix has discovered through the years that there is
tremendous value in incorporating recommendations to per-
sonalize as much of the experience as possible. This realiza-
tion pushed us to propose the Netflix Prize described in the
previous section. In this section, we will go over the main
components of Netflix personalization.

3.1 Everything is a Recommendation

Personalization starts on our homepage in any device.
This page consists of groups of videos arranged in horizontal
rows. Each row has a title that conveys the intended mean-
ingful connection between the videos in that group. Most of
our personalization is based on the way we select rows, how
we determine what items to include in them, and in what
order to place those items.

Take as a first example the Top 10 row (see Figure 1).
This row is our best guess at the ten titles you are most
likely to enjoy. Of course, when we say “you”, we really
mean everyone in your household. It is important to keep

Figure 2: Adding explanation and support for rec-
ommendations contributes to user satisfaction and
requires specific algorithms. Support in Netflix can
include your predicted rating, related shows you
have watched, or even friends who have interacted
with the title.

in mind that Netflix’ personalization is intended to handle
a household that is likely to have different people with dif-
ferent tastes. Even for a single person household we want
to appeal to your range of interests and moods. To achieve
this, in many parts of our system we are not only optimizing
for accuracy, but also for diversity. Diversification of re-
sults is an important area of research for companies that is
already attracting interest in the academic community [15,
13, 19]

Another important element in Netflix’ personalization is
awareness. We want members to be aware of how we are
adapting to their tastes. This not only promotes trust in
the system, but encourages members to give feedback that
will result in better recommendations. A different way of
promoting trust with the personalization component is to
provide explanations[18] as to why we decide to recom-
mend a given movie or show (see Figure 2). We are not
recommending it because it suits our business needs, but
because it matches the information we have from you: your
explicit taste preferences and ratings, your viewing history,
or even your friends’ recommendations.

On the topic of friends, we recently released our Facebook
connect feature. Knowing about your friends not only gives
us another signal to use in our personalization algorithms,
but it also allows for different rows that rely mostly on your
social circle to generate recommendations. Combining so-
cial with collaborative filtering data is also a worthy area of
research [20].

Some of the most recognizable personalization in our ser-
vice is the collection of “genre” rows. These range from fa-
miliar high-level categories like “Comedies” and “Dramas”
to highly tailored slices such as “Imaginative Time Travel
Movies from the 1980s”. Each row represents 3 layers of per-
sonalization: the choice of genre itself, the subset of titles
selected within that genre, and the ranking of those titles.
Rows are generated using a member’s implicit genre pref-
erences éAS recent plays, ratings, and other interactions —,
or explicit feedback provided through our taste preferences
survey (see Figure 3) . As with other personalization ele-
ments, freshness and diversity is taken into account when
deciding what genres to show from the thousands possible.



Top 10 for Xavier
—

Dad

‘ Dughter

Figure 1: Example of a Netflix Top 10 row. We promote personalization awareness and reflect on the diversity
of a household. Note though that personal labels are only the author’s guess since the system is uncertain

about the true household composition.

Interesting, the topic of generating “lists” or “sets” of related
items to recommend has had little focus in the literature ex-
cept for some domain-specific research in generating music
playlists[14].

Similarity is also an important source of personalization.
We think of similarity in a very broad sense; it can be be-
tween movies or between members, and can be in multi-
ple dimensions such as metadata, ratings, or viewing data.
Furthermore, these similarities can be blended and used as
features in other models. Similarity is used in multiple con-
texts, for example in response to generate rows of “adhoc
genres” based on similarity to titles that a member has in-
teracted with recently.

In most of the previous contexts, the goal of the recom-
mender systems is still to present a number of attractive
items for a person to choose from. This is usually accom-
plished by selecting some items and sorting them in the order
of expected enjoyment (or wtility). Since the most common
way of presenting recommended items is in some form of list,
we need an appropriate ranking model that can use a wide
variety of information to come up with an optimal sorting
of the items. In the next section, we will go into some of the
details of how to design such a ranking model.

3.2 Ranking

The goal of a ranking system is to find the best possible
ordering of a set of items for a user, within a specific context,
in real-time. We optimize ranking algorithms to give the
highest scores to titles that a member is most likely to play
and enjoy.

If you are looking for a ranking function that optimizes
consumption, an obvious baseline is item popularity. The
reason is clear: on average, a member is most likely to watch
what most others are watching. However, popularity is the
opposite of personalization: it will produce the same order-
ing of items for every member. Thus, the goal becomes to
find a personalized ranking function that is better than item
popularity, so we can better satisfy members with varying
tastes. One way to approach this is to use the member’s
predicted rating of each item as an adjunct to item popular-
ity. At this point, we are ready to build a ranking prediction
model using these two features by, for example, using a very
simple scoring function to be a linear combination of pop-
ularity and predicted rating. This gives an equation of the
form score(u,v) = wip(v) + war(u,v) + b, where u=user,
v=video item, p=popularity and r=predicted rating. This
equation defines a two-dimensional space (see Figure 77).

Once we have such a function, we can pass a set of videos
through our function and sort them in descending order ac-
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Figure 4: Constructing a basic personalized two-
dimensional ranking function based on popularity
and predicted rating

cording to the score. First, though, we need to determine the
weights w1 and w2 in our model. We can formulate this as a
machine learning problem: select positive and negative ex-
amples from your historical data and let a machine learning
algorithm learn the weights that optimize our goal. This
family of machine learning problems is known as ”Learn-
ing to Rank” and is central to application scenarios such as
search engines or ad targeting. A crucial difference in the
case of ranked recommendations is the importance of per-
sonalization: we do not expect a global notion of relevance,
but rather look for ways of optimizing a personalized model.

As you might guess, the previous two-dimensional model is
a very basic baseline. Apart from popularity and rating pre-
diction, we have tried many other features at Netflix. Some
have shown no positive effect while others have improved our
ranking accuracy tremendously. Figure 5 shows the ranking
improvement we have obtained by adding different features
and optimizing the machine learning algorithm.

Many traditional supervised classification methods such
as logistic regression or tree ensembles can be used for rank-
ing when using this pointwise approach. Recent research,
though, has allowed for more sofisticated pairwise [5, 6] or
listwise approaches [17, 9].
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Figure 5: Performance of Netflix ranking system
when adding features

3.3 Data

The previous discussion on the ranking algorithms high-
lights the importance of both data and models in creating
an optimal personalized experience. The availability of high
volumes of high quality user data allows for some approaches
that would have been unthinkable just a few years back. As
an example, here are some of the data sources we can use at
Netflix to optimize our recommendations:

e We have several billion item ratings from members.
And we receive millions of new ratings every day.

e We already mentioned the use of global item popu-
larity for ranking. There are many ways to compute
popularity such as over various time ranges or group-
ing members by region or other similarity metrics.

e Our members add millions of items to their queues
each day. And they directly enter millions of search
terms each day.

e Each item in our catalog has rich metadata such as
actors, director, genre, parental rating, or reviews.

e Using presentation and impression data, we know
what items we have recommended and where we have
shown them, and can look at how that decision has
affected the user’s actions. We can also observe the
member’s interactions with the recommendations: scrolls,
mouse-overs, clicks, or the time spent on a given page.



e Social data has become our latest source of person-
alization features. Social data may include the social
network connections themselves as well as interactions,
or activities of connected nodes.

e We can also tap into external data such as box office
performance or critic reviews to improve our features.

e And that is not all: there are many other features such
as demographics, location, language, or tempo-
ral data that can be used in our predictive models.

3.4 Models

So, what about the models? Many different modeling ap-
proaches have been used for building personalization en-
gines. One thing we have found at Netflix is that with
the great availability of data, both in quantity and types,
a thoughtful approach is required to model selection, train-
ing, and testing. We use all sorts of machine learning ap-
proaches: From unsupervised methods such as clustering
algorithms to a number of supervised classifiers that have
shown optimal results in various contexts. This is an incom-
plete list of methods you should probably know about if you
are working in machine learning for personalization: Lin-
ear regression, Logistic regression, Elastic nets, Sin-
gular Value Decomposition, Restricted Boltzmann
Machines, Markov Chains, Latent Dirichlet Alloca-
tion, Association Rules, Matrix factorization, Gra-
dient Boosted Decision Trees, Random Forests, and
Clustering techniques from the simple k-means to graphical
approaches such as Affinity Propagation.

There is no easy answer to how to choose which model will
perform best in a given problem. The simpler your feature
space is, the simpler your model can be. But it is easy to
get trapped in a situation where a new feature does not
show value because the model cannot learn it. Or, the other
way around, to conclude that a more powerful model is not
useful simply because you don’t have the feature space that
exploits its benefits [1].

4. ARCHITECTURES

In order to build Big Data solutions you not only need to
have large volumes of data, and be smart about the algo-
rithms or models you use. It is also very important to design
a software architecture that is scalable and reactive enough
to allow the system to benefit from the incoming streams of
data.

Of course, the simplest thing we can do with data is
to store it for later offline processing. There are proven
solutions to scale offline computations using, for example,
Hadoop. Offline computation has almost no limitations on
the amount of data and the computational complexity of the
algorithms, since it runs in a batch manner with relaxed tim-
ing requirements. If we had no requirements related to the
latency of the computation, and the reactiveness to new user
events, we could compute everything in an offline fashion.
However, offline results can easily grow stale between up-
dates because the most recent data is not incorporated. On
the other end of the spectrum, online computation can re-
spond quickly to events and use the most recent data. Online
components are subject to an availability and response time
Service Level Agreements (SLA) that specifies the maximum
latency of the process in responding to requests from client
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Figure 6: Netflix Architecture for Personalization

applications. This can make it harder to fit complex and
computationally costly algorithms in this approach. Near-
line computation can be seen as a compromise between the
two previous modes. In this case, computation is performed
exactly like in the online case. However, we remove the re-
quirement to serve results as soon as they are computed and
can instead store them, allowing it to be asynchronous. The
nearline computation is done in response to user events so
that the system can be more responsive between requests.

One of the key issues in a personalization architecture is
how to combine and manage online and offline computation
in a seamless manner. Model training is another form of
computation that uses existing data to generate a model that
will later be used during the actual computation of results.
Another goal of the architecture is to define how the different
kinds of events and data need to be handled by the event and
data distribution system. A related issue is how to combine
the different signals and models that are needed across the
offline, nearline, and online regimes. Finally, we also need
to figure out how to combine intermediate recommendation
results in a way that makes sense for the user. Our solution
at Netflix is outlined in Figure 6. See [2] for more details on
all these components.

5. CONCLUSION

The Netflix Prize abstracted the recommendation problem
to a proxy and simplified question of predicting ratings. But
it is clear that the Netflix Prize objective, accurate predic-
tion of a movie’s rating, is just one of the many components
of an effective recommendation system. We also need to
take into account factors such as context, popularity, inter-
est, evidence, novelty, diversity, or freshness. Supporting all




the different contexts in which we want to make recommen-
dations requires a range of algorithms and different kinds of
data.

Recommender systems in an application domain such as
video streaming need to optimize the probability a member
chooses an item and enjoys it enough to come back to the
service. In order to do so, we should employ all the data that
is available: from user ratings and interactions, to content
metadata. More data availability enables better results. But
in order to get those results, we need to have optimized
models, appropriate metrics and system architectures that
enable scalable and reactive solutions.

The availability of more and different sources of data has
opened up new research avenues. As personalization algo-
rithms keep improving, so does the experience of the users
that use these systems. But the recommendation problem
is far from solved. There are still many unexplored oppor-
tunities and lessons to be learned.
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