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Introduction

S2S2 has the following overall objective: to bring together the state-of-the-art research in the
sound domain and in the proper combination of human sciences, technological research and
neuropsychological sciences that does relate to sound and sense. Reaching this objective can
foster a new generation of research topics such as higher-level sound analysis, the so-called
“engaging” synthesis, an integrated sound-music research field, etc.

Nowadays, there is a wide variety of techniques that can be used to generate and analyze
sounds. However, urgent requirements (coming from the world of ubiquitous, mobile, pervasive
technologies and mixed reality in general) trigger some fundamental yet unanswered questions:

• how to synthesize sounds that are perceptually adequate in a given situation (or context)?

• how to synthesize sound for direct manipulation or other forms of control?

• how to analyze sound to extract information that is genuinely meaningful?

• how to model and communicate sound embedded in multimodal content in multisensory
experiences?

• how to model sound in context-aware environments?

As a specific core research emerging and motivated by the above depicted scenario, essen-
tially sound and sense are two separate domains and there is a lack of methods to bridge them
with two-way paths: From Sound to Sense, from Sense to Sound (S2S2). The coordination action
S2S2 has been conceived to prepare the scientific grounds on which to build the next generation of
scientific research on sound and its perceptual/cognitive reflexes. So far, a number of fast-moving

14
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sciences ranging from signal processing to experimental psychology, from acoustics to cognitive
musicology, have tapped the S2S2 arena here or there. What we are still missing is an integrated
multidisciplinary and multidirectional approach. Only by coordinating the actions of the most
active contributors in different subfields of the S2S2 arena we can hope to elicit fresh ideas and
new paradigms. The potential impact on society is terrific, as there is already a number of mass
application technologies that are stagnating because of the existing gap between sound and sense.
Just to name a few: sound/music information retrieval and data mining (whose importance ex-
ceeds P2P exchange technologies), virtual and augmented environments, expressive multimodal
communication, intelligent navigation, etc. S2S2 overall objective can be further specified in the
following short-term objectives:

• to establish a reference framework for all the thematic areas (See Thematic areas) catered
by the best experts available in Europe and abroad by setting up the appropriate communi-
cation and information sharing tools on all fields (website, mailing lists, publications, good
practice statements and references, etc.);

• to develop a research roadmap for Sound-related Sciences and their research applications,
to assess the current state of the art and likely future research directions (propose industrial
projects, joint projects, ..);

• to promote advanced scientific studies and extensive reporting on all thematic areas through
the organization of dedicated and specialized international thematic workshops;

• to assist in training and development of new researchers in this area through the consti-
tution of a program of training and mobility dedicated to professionals and post-graduate
students;

• to disseminate the research activity coordinated within S2S2 to potential beneficiaries and
external collaborators such as industry and international groups (participating to confer-
ences, contributing to international standards, etc.);

• to promote extensive scientific development through the active participation to interna-
tional conferences calling for papers on all aspects relating to the thematic areas developed
by S2S2;

• to create a distributed publishing activity capable of answering the needs for publication in
several domains belonging to sound research activities through both traditional publishing
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and new Free Publishing items addressed to the specialized and the layman public alike on
all thematic areas;

• to extend the awareness of scientific research in sound and its related social implications
(e.g. ecological acoustics, increase of life quality, etc.) to socially relevant areas (such
as non-governmental organizations, recently-industrialized countries, equal-opportunity
situations, etc.) through specific dissemination in these areas.

Partners

• Media Innovation Unit - Firenze Tecnologia, Firenze - Italy (Coordinator)

• Kungl Tekniska Högskolan, Stockholm - Sweden

• CSC DEI, Università di Padova, Padova - Italy

• DI-VIPS, Università di Verona, Verona - Italy

• DIST, Università di Genova, Genova - Italy

• Helsinki University of Technology, Helsinki - Finland

• PECA DEC, Ecole Normale Supérieure, Paris - France

• IPEM, Ghent University - Belgium

• LEAD, Université de Dijon - France

• Fundació Universitat Pompeu Fabra, Barcelona - Spain

• OFAI Austrian Research Institute for Artificial Intelligence, Wien - Austria

Purpose of this book

This book aims at giving a state-of-the-art in research related to sound and sense.



Chapter 1
Sound, sense, and music mediation:
A historical/philosophical perspective

Marc Leman and Frederik Styns
IPEM, Dept. of Musicology, Ghent University, Ghent

1.1 Introduction

This chapter gives a historical/philosophical overview of the sense/sound relationship from the
perspective of music mediation. Sense is thereby associated with musical signification practice,
while sound is associated with physical energy or matter. Music mediation is about intermedi-
ary processes that account for the transition of musical sound into sense, or sense into sound.
This overview shows that in the past, the sound/sense relationship was first considered from a
cognitive/structural point of view. Only recently, this viewpoint has been broadened and more
attention has been devoted to the human body as mediator between sound and sense. This
change in approach has important consequences for future research. The overview aims at pro-
viding a perspective for the current state-of-the-art in music research, from which projections
into the future can be made.

17
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1.2 Stating the problem

Musical sound can have a large impact on a human being, and this impact may be beneficial but in
some cases also harming. For example, it is generally known that music can be beneficial for the
personal development such as the forming of a personal self or identity, or for social bonding such
as the forming of a group identity Hargreaves and North [1999], McNeill [1995]. It is believed that
music may enhance sports activities, consumption Wilson [2003], and it can have healing effects
on human subjects Walker [2003], Stradling [2002]. On the other hand, there is also evidence that
certain types of music can have a harming effect on people, even driving people to self-destruction
and suicide (e.g. Maguire and Snipes [1994], Wintersgill [1994], Gowensmith and Bloom [1997],
Scheel and Westefeld [1999], Stack [2000], Lacourse et al. [2001], Rustad et al. [2003]).

In this paper, we take for granted that music can have a powerful effect on humans. Yet,
a better understanding of this effect is necessary for two reasons, first, for the development of
technologies for music mediation , and second, for the enhancement of possible beneficial effects.

Technologies for music mediation aim at bridging the gap between a human approach
and a physical approach. Humans think and act in terms of goals, values, interpretation, while
the physical approach considers music from the point of view of physical energy and signal
processing. Mediation is about the intermediary processes that link the human approach with
the physical approach.

The question is what properties should a music mediation technology have? For example,
electronic music instruments may translate a meaningful musical idea (sense) into sound but
which properties should be taken into account in order to make this translation effective? Or
when music is contained on a mobile wearable device, how can we access it in a natural way?
What properties of the mediation technology would facilitate access to digitally encoded energy?

Indeed, modern digital technology raises many questions concerning to access to music.
Reference can be made to digital music libraries, the use of interactive multimedia systems,
or digital audio effects (sonifications), control of sound synthesis and many other applications.
Traditional mediators, based on bio-mechanical devices are no longer sufficient and need a
counterpart in the digital domain. But what mediation tools are needed to make this access
feasible and natural, and what are their properties? The answer to this question is highly
depending on our understanding of the sound/sense relationship as a natural relationship. It is
therefore of interest to have a look at how this relationship has been perceived in the past.
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In that past, sense has often been related to mental representations and the activity of the
human mind. But how is this mind connected to matter? It is known that this relationship
motivated philosophical thinking in the ancient times (Plato, Aristotle, Aristoxenos), up to the
development of scientific thinking in modern times (Descartes, Spinoza), and actual philosophical
thinking Dennett [1991], Damasio [1999]. Should we adopt the view that sense and sound form
part of two parallel worlds (mind and matter), as Descartes thought? Or as two sides of the same
coin, as Spinoza thought? Or is mind just an epiphenomenon of matter, as modern philosophy
suggest? Or is there just mind that counts, as postmodern philosophy claim? And what about
new trends in embodied cognition, ecological theories and trends to multi-modal perception?

This chapter aims at tracing historical and philosophical antecedents of sense/sound studies
in view of an action-oriented music epistemology. This epistemology is grounded on the idea that
sound and sense are mediated by the human body, and that technology may form an extension of
this natural mediator. The chapter is not intended to contribute to philosophy, nor to history but
to focus on the major important issues that should be taken into account when thinking about
future activities in music research. The chapter aims at providing a perspective from which
projections into the future can be made.

1.3 From music philosophy to music science

The roots of the modern views on sense/sound relationships can be traced back ancient Greek
philosophers, such as Pythagoras, Aristoxenos, Plato and Aristotle. Pythagoras focused attention
on the mathematical order underlying harmonic musical relations, while Aristoxenos concerned
himself with perception and musical experience Barker [1984]. This distinction between acoustics
and practice, is still relevant today, as it reflects the basic distinction between sound and sense.
Plato comes into the picture mainly because he attributed strong powers to music, which for him
was a reason to abandon certain types of music because of the weakening effect it has on the
virtue of young people.

Of particular relevance to the modern viewpoint is Aristotle’s famous mimesis theory
(Politics, Part V). In this theory, he states that rhythms and melodies contain similarities with the
true nature of qualities in human character, such as anger, gentleness, courage, temperance, and
the contrary qualities. When we hear imitations of that in music – and according to Aristotle,
the objects of imitation in art are men in action, emotions and characters – our feelings move in
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sympathy with the original. When listening to music, our soul thus undergoes changes in tune
with the affective character being imitated. Aristotle assumes that by imitating the qualities that
these characters exhibit in music, our souls are moved in a similar way, so that we become in
tune with the affects we experience when confronted with the original.

With these views on acoustics (music as ratios of numbers), musical experience (music
as perceived structure), and musical expressiveness (music as imitation of reality), there was
sufficient material for a few centuries of philosophical discussion.

This would last until renaissance, when science and art were inspired by a new freedom
of thinking. In the early 17th Century, scientific thinking became more prominent, and this had
an effect on music research. In his Musicae compendium (1618), the young Descartes gives a
good summary of the state-of-the-art. He divided music into three basic components, each of
which can be isolated for study, firstly, the mathematical-physical aspect of sound, secondly, the
nature of sensory perception, and thirdly, the ultimate effect of such perception on the individual
listener’s soul. The first is clearly about sound as physical energy, while the second and third are
about sense, namely, sense as perceived structure and sense as affect. To Descartes, the impact of
sound on a listener’s emotions or ’soul’ was a purely subjective, irrational element and therefore
incapable of being scientifically measured.

Indeed, the scientific revolution, of which Descartes was a component next to other tow-
ering figures such as J. Kepler, S. Steven, G. Galilei, M. Mersenne, I. Beeckman, C. Huygens,
and others, had a major focus on the mathematical and physical aspect of music, whereas the
link with musical sense was more a practical consequence of this aspect, namely the calculation
of pitch tunings for clavichord instruments Cohen [1984]. In line with this is Euler’s ”gradus
suavitatis”, which is an algorithm that assigns to a frequency ratio a number that corresponds
with the ”degree of pleasure” of this ratio. Structural aspects of perception, such as pitch scales
and consonance, were clearly at the borderline of mathematical and physical enquiries. Emotions
or expressive gestures were not yet considered to be a genuine subject of scientific study.

Parallel with this scientific approach to sound, the traditions of Aristoxenes and Aristotle
culminated in rule-based accounts of musical practices such as Zarlino’s, and later J. Rameau’s
and Mattheson’s. In Der Volkommene Kapelmeister (1739), for example, Mattheson offers a
manual of how to compose in a convincing way music that is expressive of certain affects. This
work of Mattheson focuses on the way people deal with music and on the way they experience
the musical sounds as something that tangles their most intimate feelings. These composition
recipes can be seen as handbooks for creating music that makes sense. Obviously, this approach
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was based on musical intuition.

In the 18th Century, the science of sound and the practice of musical sense were not clearly
connected by a common concept. Sound was the subject of a scientific theory, while sense was
still considered to be the by-product of something that is done with sound. There was no real
scientific theory of sense, and so, the gap between sound and sense remained huge.

1.4 The cognitive approach

The idea that a scientific study of subjective involvement with music was possible dates from
the late 19th Century. Psychophysics and psychology launched the idea that between sound and
sense there is the human brain, whose principles can be understood as processing of information.

1.4.1 Pioneers

The first stage is characterized by the pioneering work of scientists such H. v. Helmholtz ,
W. Wundt, F. Brentano, who provided the foundations of psychoacoustics, psychology, and phe-
nomenology respectively. With the introduction of psychoacoustics by Helmholtz von Helmholtz
[1863/1968], the foundations were led for an information processing approach to the sound/sense
relationship. This approach assumed that musical sense could be seen as the result from neuro-
physiological mechanisms that function as resonators in response to sound input. This approach
became very influential in music research because it provided an explanation of some very fun-
damental structural aspects of musical sense, such as consonance and dissonance, harmony and
tonality. Euler’s numerical principle could now be exchange by physiological mechanisms whose
principles can be known by doing scientific experiments. Mathematical functions can capture
the main input/output relationships of these physiological mechanisms. This approach provided
the physiological grounding for Gestalt psychology in the first half of the 20th Century, and the
cognitive sciences approach of the second half of the 20th Century.

1.4.2 Gestalt psychology and systematic musicology

The second important step was the Gestalt movement, which dates back to the work of Stumpf
and Brentano in the late 19th century, and which gained prominence by about 1920, thanks to
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the work of scholars such as Wertheimer, Kohler and Koffka. At about 1930, music psychology
had already reached a solid base of knowledge. This was based, among others, on the elaborate
books on Tonpsychologie by C. Stumpf Stumpf [1883, 1890], G. Révész Révész [1946], or E. Kurth’s
Kurth [1913/1973]theory of energetic musical experience, and a lot of empirical work by many
other scholars that had been directed to the perception of tone distances and intervals, melodies,
timbre, as well as rhythmic structures. After 1945, the Gestalt theory lost much of its attractiveness
and internationally acclaimed innovative position (see Leman and Schneider [1997]). Instead, it
met severe criticisms especially from behavioristic and operationalistic quarters. There had been
too many Gestalt laws, and perhaps not enough hardcore explanations to account for these,
notwithstanding the great account of experimental work that had been done over decades.

Though its sparkle by 1950 was gone, Gestalt psychology never really disappeared, and
instead continued to produce works of prime importance to both general psychology and music
psychology in particular. Gestalt thinking gradually gained a new impetus, and was found
to be of particular importance in combination with then up-to-date trends in cybernetics and
information science.

Gestalt theory was also one of the pillars of systematic musicology. One may just point to
Stumpf’s many experiments on ”Verschmelzung” and consonance Schneider [1997], to Köhlers
extensive experiments on timbre, that led to the identification of formants, to Koffka’s experiments
on rhythm perception, or to various experiments set out by v. Hornbostel and Abraham on tonal
distances and tonal brightness. What emerged in this approach is a thorough cognitive account
of music perception based on the idea that sense emerges as a global pattern from the information
processing of pattern contained in musical sound. Much of the older literature on systematic
musicology is summarized in Wellek Wellek [1963] and in Elschek Elschek [1992]. The later
contains a comprehensive catalogue of systematic musicology.

1.4.3 Information theoretical accounts of sense

The pioneers and Gestalt theory introduced a methodology based on experiment. Gradually
also, it became clear that technology would become the next important methodological pillar.
Soon after 1945, with the introduction of electronics and the collaboration between engineers and
composers, electronic equipment was used for music production activities, and there was a need
for tools that would connect musical thinking with sound energies. This was a major step in the
development of theories that related sound to sense from the viewpoint of music production,
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that is, from sense to sound. So far, the main contributions had come from the viewpoint of music
perception, that is, from sound to sense.

The approach which took music technology seriously into account was conceived of in
terms of information theory (e.g. Moles [1952, 1958], Winckel [1960]). Notions such as entropy and
channel capacity provided objective measures of the amount of information contained in music and
the amount of information that could possibly be captured by the devices that process music. The
link from information to sense was easily made. Music, after all, was traditionally conceived of
in terms of structural parameters such as pitch and duration. Information theory thus provided
a measurement, and thus a higher-level description, for the formal aspects of musical sense.
Owing to the fact that media technology allowed the realisation of these parameters into sonic
forms, information theory could be seen as an approach to an objective and relevant description
of musical sense.

1.4.4 Phenomenology and new media technology

Schaeffer Schaeffer [1966], however, noticed that an objective description of music does not
always correspond with our subjective perception. In line with phenomenology and gestalt
theory, he felt that the description of musical structure, based on information theory, does not
always tell us how music is actually perceived by subjects. Measurements of structures are
certainly useful and necessary, but these measurements don’t always reveal relationships with
subjective understanding. Schaeffer therefore related perception of sounds to the manipulation
of the analogue electronic sound-generating equipment of that time. He conceived of musical
sense in view of the new media technology of his time. Schaeffer, therefore, drew attention to the
role of new media as mediators between sound and sense.

1.4.5 Computational modelling of music cognition

The symbol-oriented approach to music description was launched by the appeal of the information

processing psychology and formal linguistics of the late 1950s (see e.g. Lindsay and Norman [1977]),
but now in combination with computer modelling. It offered an approach to musical sense that
drew upon the notion of simulation of mental information processing mechanisms. Cognitive
science, as the new trend was soon called, introduced the point of view that the human mind
and thus sense could be conceived of in terms of a machine that manipulates representations of
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content on a formal basis Fodor [1981].

The application of the symbol-based paradigm to music (see e.g. Longuet Higgins [1987],
Laske [1975], Baroni and Callegari [1984] and other researchers, see also Balaban et al. [1992])
was very appealing. However, the major feature of this approach is that it works with a concep-
tualisation of the world which is cast in symbols, while in general it is difficult to pre-define the
algorithms that should extract the conceptualised features from the environment. The predefini-
tion of knowledge atoms and the subsequent manipulation of those knowledge atoms in order
to generate further knowledge is a main characteristic of a Cartesian or rationalist conception of
the world. Symbol systems, when used in the context of rationalist modelling, should therefore
be used with caution.

In the 1980ies, a shift of paradigm from symbol-based modelling towards subsymbol-based
modelling was initiated by the results of the so-called connectionist computation Rumelhart et al.
[1987], Kohonen [1995]. Connectionism, in fact, (re-)introduced statistics as the main modelling
technique for making connections between sound and sense. Given the limitations of rationalist
modelling, this approach was rather appealing for music research Todd et al. [1999]. The sub-
symbolic approach is now regarded as an appropriate tool to evaluate cognitive science above
the status of mechanized folk psychology. It offers a computational methodology that is in line
with the naturalistic epistemology of traditional systematic musicology. It promises an integrated
approach to psychoacoustics, auditory physiology, Gestalt perception, self-organization and cog-
nition. In the search for universal psychological laws, methodology and empirical foundation
are required to be as hard as in the physical sciences.

1.5 Beyond cognition

The cognitive tradition became criticized for the fact that it neglected the subjective component in
the subject’s involvement with the environment. Criticism came from many different corners, first
of all from inside cognitive science, in particular from scholars that stressed the phenomenological
and embodied aspects of cognition Maturana and Varela [1987], Varela et al. [1992] and later also
from the so-called postmodern musicology.
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1.5.1 Subjectivism and postmodern musicology

David Huron Huron [1999] defines New Musicology as “a methodological movement in music
scholarship of the past two decades, that is loosely guided by a recognition of the limits of
human understanding, an awareness of the social milieu in which scholarship is pursued, and
a realization of the political arena in which the fruits of scholarship are used and abused”.
DeNora DeNora [2003] argues that, in response to developments in other disciplines such as
literary theory, philosophy, history, anthropology, and sociology, new musicologists have called
into question the separation of historical issues and musical form and that they have focused
on the role of music as a social medium. New Musicology, like Postmodern thinking, assumes
that there is no absolute truth to be known. More precisely truth ought to be understood as a
social construction that relates to a local or partial perspective on the world. So the focus of new
musicology is on the socio-cultural contexts in which music is produced, perceived and studied
and how such contexts guide the way people approach, experience and study music. Aspects
of this school of thinking are certainly relevant to the sound/sense relationship (e.g. Hatten
[1994], Lidov [2005], Cumming [2000], but the hermeneutic methodology draws on subjective
projections and interpretations. The methodology is less easily concealed with the scientific
approach of modern music research. In addition, there is less attention to the problem of music
mediation technologies.

1.5.2 Embodied music cognition

The embodied view by Maturana and Varela and others Varela et al. [1992], Maturana and Varela
[1987] has generated a lot of interest and a new perspective for how to approach the sound/sense
relationship. In this approach, the link between sound and sense is based on the role of the
human body as mediator between physical energy and meaning. In the cognitive approach the
sound/sense relationship was mainly conceived from the point if view of mental processing.
The approach was effective in acoustics and structural understanding of music but it was less
concerned with gestures and emotional involvement. The Aristotelian component, related to
imitation an aesthetic experiences, was not part of the main cognitive program, nor was multi-
modal information processing.

Yet the idea that musical involvement is based on the imitation of moving sonic forms (and
thus multi-modal) has a certain tradition. In fact, this tradition has been gradually re-discovered
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in the last decennium. In systematic musicology, a school of researchers in the late 19th and early
20th centuries had already a conception of musical involvement based on corporeal articulations
Lipps [1903], Meirsmann [1922/23], Heinitz [1931], Becking [1928], Truslit [1938].

This approach differs from the well-known gestalt theoretical idea (e.g. Wertheimer, Köhler,
Koffka) in that it puts more emphasis on action. Like gestalt theory, this approach may be traced
back to open problems in Kant’s [1790] aesthetic theory, in particular the idea that beauty is in
the formal structure. Unlike gestalt theory, the emphasis was less on brain processes and the
construction of good forms, but rather more on the phenomenology of the empathic relationship
with these forms through movement and action.

For example, Lipps Lipps [1903] argues that the understanding of an expressive movement
(Ausdrucksbewegung) in music is based on empathy (inneren Mitmachen, Einfülung). While being
involved with moving sonic forms, we imitate the movements as expressions. By doing this,
we practice the motor muscles which are involved when genuine emotions are felt. As such,
we have access to the intended emotional meaning of the music. According to Lipps, the act of
(free or unbounded) imitation gives pleasure because it is an expression of the self (Lipps, 1903,
p. 111).1 As such, sad music may be a source of pleasure (Lust) because the moving sonic forms
allow the subject to express an imitative movement (sadness). This imitation allows the subject
to participate in the expressive movement without being emotionally involved, that is, without
experiencing an emotional state of sadness.

Also Truslit Truslit [1938], Repp [1993] sees corporeal articulations as manifestations of the
inner motion heard in music. He says that “provided the sound has the dynamo-agogic devel-
opment corresponding to a natural movement, it will evoke the impression of this movement
in us” Repp [1993]. Particularly striking is the example he gives of Beethoven who, while com-
posing, would hum or growl up and down in pitch without singing specific notes. This is also
a phenomenon often heard when jazz musicians are playing. Truslit used the technology of his
time to extract information from acoustic patterns, as well as information from body movements
with the idea of studying their correlations.

In Gestaltung und Bewegung in der Musik, Alexander Truslit argues that in order to fully
experience music, it is essential to understand its most crucial characteristic. According to Truslit
this characteristic, the driving force of the music, is the expression of inner movement. The

1 Similar ideas are found in the theory of optimal experience of Csikszentmihalyi Csikszentmihalyi [1990]. Any
expression of the self, or anything that contributes to its ordering, gives pleasure.
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composer makes music that is full of inner movement. The musician gives shape to these inner
movements by translating them into proper body gestures and the ’good’ music listener is able
to trace and imitate these movements in order to experience and understand the music properly.

According to Truslit, not all music listeners are able to perceive the inner movements
of the music. However, some music listeners have a special capacity to couple the auditive
information to visual representations. Such visual representations are referred to as synoptic
pictures. Listeners possessing this capability have a great advantage for understanding the
musical inner movement.2

In accordance with Truslit, Becking Becking [1928], Nettheim [1996] makes also a connec-
tion between music and movement, based on the idea of a dynamic rhythmic flow beyond the
musical surface. This flow, a continuous up-down movement, connects points of metrical grav-
itude that vary in relative weight. Beckings most original idea was that these metrical weights
vary from composer to composer. The analytical method Becking worked out in order to deter-
mine these weights was his method of accompanying movements, conducted with a light baton.
Like Truslit, Becking determined some basic movements. These basic movements form the basic
vocabulary that allowed him to classify the personal constants of different composers in different
eras.

The embodied cognition approach states that the sound/sense relationship is mediated by
the human body. This is largely in agreement with recent thinking about the connections between
perception and action Prinz and Hommel [2002], Dautenhahn and Nehaniv [2002].

2Central in Truslits approach of musical movement are the notions of dynamics (intensity) and agogics (duration).
If the music has the dynamo-agogic development corresponding to a natural movement, it will evoke the impression
of this movement. Four basic movements are being distinguished in order to identify and understand musical
movement. These basic movements are: straight, open, closed and winding. Furthermore, it is stated that, based
on this basic vocabulary of movements, it is possible to determine the shape of the inner movements of the music
in an objective way. Once the shapes of the movements are determined, it is found useful to make graphical
representations of them. Such graphical representations can be used by musicians and music listeners as guidelines
for understanding and examining music’s inner movement. Truslit sees the inner movement of music first of all as
something that is presented in the musical melody. The addition of rhythmic, metric or harmonic elements can only
refine this inner movement. A distinction is made between rhythmic movement and the inner movement of the
music that Truslit focuses on. In contrast to rhythmic movement, which is related to individual parts of the body,
the inner movement forms the melody and is, via the labyrinth (is situated in the vestibular system), related to the
human body as a whole.
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1.5.3 Music and emotions

The study of subjective involvement with music draws upon a long tradition of experimental
psychological research, initiated by Wundt in the late 19th Century. Reference can be made to
research in experimental psychology in which descriptions of emotion and affect are related to
descriptions of musical structure (see e.g. Hevner [1936], Watson [1942], Reinecke [1964], Imberty
[1976], Wedin [1972], Juslin and Sloboda [2001], Gabrielsson and Juslin [2003] for an overview).
These studies take into account a subjective experience with music. Few authors, however, have
been able to relate descriptions of musical affect and emotions with descriptions of the physical
structure that makes up the stimulus. Most studies, indeed, interpret the description of structure
as a description of perceived structure, and not as a description of physical structure. In other
words, description of musical sense proceeds in terms of perceptual categories related to pitch,
duration, timbre, tempo, rhythms, and so on.

In that respect, Berlyne’s work Berlyne [1971] on experimental aesthetics is important
for having specified a relationship between subjective experience (e.g. arousal) and objective
descriptions of complexity, uncertainty or redundancy. In Berlyne’s concept, the latter provide an
information-theoretic account of symbolic structures (e.g. melodies). They are not just based on
perceived structures but are extracted directly from the stimulus (as symbolically represented).
However, up to the present, most research has been based on a comparison between perceived
musical structure and experienced musical affect. What is needed are comparisons of structure as
perceived and structure which is directly extracted from the physical energy Leman et al. [2003].

1.5.4 Gesture Modelling

During the last decade, research has been strongly motivated by a demand for new tools in view
of the interactive possibilities offered by digital media technology. This stimulated the interest
in gestural foundations of musical involvement.3 With the advent of powerful computing tools,
and in particular real-time interactive music systems Pressing [1992], Rowe [1992], gradually
more attention has been devoted to the role of gesture in music Wanderley and Battier [2000],
Camurri et al. [2001], Sundberg [2000], Camurri et al. [2005]. This gestural approach has been
rather influential in that it puts more emphasis on sensorimotor feedback and integration, as

3In 2004, the ConGAS COST-287 action, supported by the EU, established a European network of laboratories
that focus on issues related to gesture and music.
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well as on the coupling of perception and action. With new sensor technology, gesture-based re-
search has meanwhile become a vast domain of music research Paradiso and O’Modhrain [2003],
Johannsen [2004], Camurri and Rikakis [2004], Camurri and Volpe [2004], with consequences for
the methodological and epistemological foundations of music cognition research. There is now
convincing evidence that much of what happens in perception can be understood in terms of
action (see e.g. Jeannerod [1994], Berthoz [1997], Prinz and Hommel [2002]. Pioneering stud-
ies in music Clynes [1977], Todd et al. [1999], Friberg and Sundberg [1999] had addressed this
coupling of perception and action in musical activity, yet the epistemological and methodolog-
ical consequences of this approach have not been fully worked out in terms of a musicological
paradigm Leman [1999]. It is likely that more attention to the coupling of perception and action
will result in more attention to the role of corporeal involvement with in music, which in turn
will require more attention to multi-sensory perception, perception of movement (kinaesthesia),
affective involvement, and expressiveness of music Leman and Cammuri [In Press].

Physical modelling:

Much of the recent interest in gesture modelling has been stimulated by advances in physical mod-

elling. A physical model of a musical instrument generates sound on the basis of the movements of
physical components that make up the musical instrument (for an overview, see Karjalainen et al.
[2001]). In contrast with spectral modelling, where the sound of a musical instrument is modelled
using spectral characteristics of the signal that is produced by the instrument, physical modelling
focuses on the parameters that describe the instrument physically, that is, in terms of moving
material object components. Sound generation is then a matter of controlling the articulatory

parameters of the moving components. Physical models, so far, are good at synthesising indi-
vidual sounds of the modelled instrument. And although it is still far from evident how these
models may synthesise a score in a musically interesting way – including phrasing and perfor-
mance nuances – it is certain that a gesture-based account of physical modelling is the way to
proceed D’haes [2004]. Humans would typically add expressiveness to their interpretation, and
this expressiveness would be based on the constraints of body movements that take particular
forms and shapes, sometimes perhaps learned movement sequences and gestures depending
on cultural traditions. One of the goals of gesture research related to music, therefore, aims at
understanding the biomechanical and psychomotor laws that characterise human movement in
the context of music production and perception Camurri and Volpe [2004].
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Motor theory of perception:

Physical models further suggest a reconsideration of the nature of perception in view of stimulus-
source relationships and gestural foundations of musical engagement. Purves and Lotto Purves and Lotto
[2003], for example, argue that invariance in perception is based on a statistics of proper rela-
tionships between the stimulus and the source that produces the stimulus. Their viewpoint is
largely influenced by recent studies in visual perception. Instead of dealing with feature ex-
traction and object reconstruction on the basis of properties of single stimuli, they argue that
the brain is a statistical processor which constructs its perceptions by relating the stimulus to
previous knowledge about stimulus-source relationships. Such a statistics, however, assumes
that aspects related to human action should be taken into account because the source cannot
be known unless through action. It that respect, this approach differs from previous studies in
empirical modelling, which addressed perception irrespective of action related issues. There-
fore, the emphasis of empirical modelling on properties of the stimulus should be extended with
studies that focus on the relationship between stimulus and source, and between perception and
action. Liberman and Mattingly Liberman and Mattingly [1989] had already assumed that the
speech production-perception system is, in effect, an articulatory synthesiser. In the production
mode, the synthesiser is activated by an abstract gestural pattern from which the synthesiser
computes a series of articulatory movements that are needed to realise the gestures into mus-
cle movements of the vocal tract. In the perception mode, then, the synthesiser computes the
series of articulatory movements that could have produced the signal, and from this articulatory
representation, the intended gestural pattern, contained in the stimulus, is obtained. Liberman
and Mattingly assumed a specialised module responsible for both perception and production of
phonetic structures. The perceptual side of this module converts automatically from acoustic
signal to gesture. Perception of sound comes down to finding the proper parameters of the
gesture that would allow the re-synthesis of what is heard. So, features related to sound are in
fact picked up as parameters for the control of the articulatory system. Perception of a sound, in
that view, is an inhibited re-synthesis of that sound, inhibited in the sense that the re-synthesis
is not actually carried out but simulated. The things that need to be stored in memory, then, are
not auditory images, but gestures, sequences of parameters that control the human articulatory
(physical) system. The view also assumes that perception and action share a common repre-
sentational system. Such models thus receive input from the sensors and produce appropriate
actions as output and, by doing this, stimuli thus become meaningful in relation to their sources
which are objects of action Varela et al. [1992]. Action, in other words, guarantees that the stimuli
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are connected to the object, the source of the physical energy that makes up the stimulus. The
extension of empirical modelling with a motor theory of perception is currently a hot topic of
research. It has some very important consequences for the way we conceive of music research,
and in particular also for the way we look at music perception and empirical modelling.

1.6 Conclusion

The relationship between sound and sense is one of the main themes of the history and philosophy
of music research. In this overview, attention has been drawn to the fact that three components
of ancient Greek thinking provided a basis for this discussion, namely, acoustics, perception,
and feeling (“movement of the soul”). Scientific experiments and technological developments
were first (17th-18th Century) based on an understanding of the physical principles and then
(starting from the late 19th Century) gradually on an understanding of the subjective principles,
starting with principles of perception of structure, towards a better understanding of principles
that underly emotional understanding.

During the course of history, the problem of music mediation was a main motivating
factor for progress in scientific thinking about the sound/sense relationship. This problem was
first explored as an extension of acoustic theory to the design of music instruments, in particular,
the design of scale tuning. In modern times this problem is explored as an extension of the
human body as mediator between sound and sense. In the 19th Century, the main contribution
was the introduction of an experimental methodology and the idea that the human brain is the
actual mediator between sound and sense.

In the last decades, the scientific approach to the sound/sense relationship has been driven
by experiments and computer modelling. Technology has played an increasing important role,
first as measuring instrument, later as modelling tool and music mediation tools. The approach
started from cognitive science and symbolic modelling, and turned to sub-symbolic modelling
and empirical modelling in the late 1980ies. In the recent decades, more attention has been draws
to the idea that the actual mediator between sound and sense is the human body.

With regards to new trends in embodied cognition, it turns out that the idea of the human
body as a natural mediator between sound and sense is not entirely a recent phenomenon,
because these ideas have been explored by researchers such as Lipps, Truslit, Becking, and many
others. What it offers is a possible solution to the sound/sense dichotomy by saying that the
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mind is connected to matter by means of the body. Scientific study of this relationship, based on
novel insights of the close relationship between perception and action, is now possible thanks to
modern technologies that former generations of thinkers did not have at their disposition.

A general conclusion to be drawn from this overview is that the scientific methodology has
been expanding from purely physical issues (music as sound) to more subjective issues (music
as sense).
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Pierre Schaeffer. Traité des objets musicaux essai interdisciplines. Pierres vives. Seuil, Paris, 1966.

K. R. Scheel and J. S. Westefeld. Heavy metal music and adolescent suicidality: An empirical
investigation. Adolescence, 34(134):253–273, 1999.

A. Schneider. Verschmelzung, tonal fusion, and consonance: Carl stumpf revisited. In M. Leman,
editor, Music, Gestalt, and Computing. Studies in Cognitive and Systematic Musicology. Springer-
Verlag, Berlin, 1997.

S. Stack. Blues fans and suicide acceptability. Death Studies, 24(3):223–231, 2000.

R. Stradling. Music as medicine: The history of music healing since antiquity. Social History of

Medicine, 15(2):341–342, 2002.

Carl Stumpf. Tonpsychologie. S. Hirzel, Leipzig, 1883.

Carl Stumpf. Tonpsychologie II. S. Hirzel, Leipzig, 1890.

J. Sundberg, editor. Music and Motion (Special issue of the Journal of New Music Research 29(3)).
Swets and Zeitlinger, Lisse, 2000.

N. P. M. Todd, D. J. O’Boyle, and C. S. Lee. A sensory-motor theory of rhythm, time perception
and beat induction. Journal of New Music Research, 28(1):5–28, 1999.

Alexander Truslit. Gestaltung und bewegung in der musik; ein tönendes buch vom musikalischen vortrag

und seinem bewegungserlebten gestalten und hören. C.F. Vieweg, Berlin-Lichterfelde,, 1938.
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Chapter 2
Learning music: prospects about implicit
knowledge in music, new technologies and
music education

Abstract

Research in auditory cognition domain has shown that even nonmusician listeners have knowledge about

the Western tonal musical system. Acquired by mere exposure to musical pieces, this implicit knowledge

guides and shapes music perception. The first part of our article presents some research studying implicit

learning processes, which are at the origin of musical knowledge of nonmusician listeners, and the perception

of musical structures. The second part makes the link between findings in cognitive psychology and the

use of multimedia. It presents some examples of applications for the instruction of learning and perceiving

Western tonal music and contemporary music.

Introduction

The present article proposes an overview on the musical learning by underlining the force of the
cognitive system, able to learning and treating complex information at an implicit level. The first
part summarizes research in cognitive sciences, which study the processes of implicit learning and
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the musical perception in listener nonmusician. These studies show that the nonmusicians obtain
generally good performances, very often comparable to those of the musicians. The second part
illustrates by means of some examples the use of multimedia tools for music (learning, perception,
understanding). These illustrations are based on the recent advances in cognitive psychology
concerning the acquisition of knowledge, their representation, influence of the attention as well
as the interaction between visual and auditive modalities.

2.1 Implicit processing of musical structures

2.1.1 How do non-musician listeners acquire implicit knowledge of music?

Implicit learning processes enable the acquisition of highly complex information and without
complete verbalizable knowledge of what has been learned (Seger, 1994). Two examples of highly
structured systems in our environment are language and music. Listeners become sensitive to the
underlying regularities just by mere exposure to linguistic and musical material in everyday life.
The implicitly acquired knowledge influences perception and interaction with the environment.
This capacity of the cognitive system is studied in the laboratory with artificial material containing
statistical structures, such as finite state grammars or artificial languages (i.e., Altmann, Dienes
& Goode, 1995; Reber, 1967, 1989; Saffran, Newport & Aslin, 1996). Tonal acculturation is one
example of the cognitive capacity to become sensitive to regularities in the environment. Francès
(1958) was one of the first underlining the importance of statistical regularities in music for
tonal acculturation, suggesting that mere exposure to musical pieces is sufficient to acquire tonal
knowledge, even if it remains at an implicit level. In music cognition domain, numerous research
has provided evidence for nonmusicians’ knowledge about the tonal system.

2.1.2 Implicit learning of Western pitch regularities

Western tonal music constitutes a constrained system of regularities (i.e., regularities of co-
occurrence, frequency of occurrence and psychoacoustic regularities) based on a limited number
of elements. This section presents the tonal system from the perspective of cognitive psychology:
it underlines the basic regularities between musical events, which appear in most musical styles
of occidental everyday life (e.g., classical music, pop music, jazz music, Latin music etc.) and
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which can be acquired by implicit learning processes. The Western tonal system is based on 12
pitches repeated cyclically over octaves. Strong regularities of co-occurrence and frequencies
of occurrence exist among these 12 pitch classes (referred to as the tones C, C#/Db, D, D#/Eb,
E, F, F#/Gb, G, G#/Ab, A, A#/Bb, B): tones are combined into chords and into keys, forming a
three-level organizational system (Figure 1). Based on tones and chords, keys (tonalities) define
a third level of musical units. Keys have more or less close harmonic relations to each other. Keys
sharing numerous tones and chords are said to be harmonically related. The strength of harmonic
relations depends on the number of shared events. In music theory, major keys are conceived
spatially as a circle (i.e., the circle of fifths), with harmonic distance represented by the number of
steps on the circle. Inter-key distances are also defined between major and minor keys. The three
levels of musical units (i.e., tones, chords, keys) occur with strong regularities of co-occurrence.
Tones and chords belonging to the same key are more likely to co-occur in a musical piece than
tones and chords belonging to different keys. Changes between keys are more likely to occur
between closely related keys (e.g., C and G major) than between less-related ones (e.g., C and
E major). Within each key, tones and chords have different tonal functions creating tonal and
harmonic hierarchies. These within-key hierarchies are strongly correlated with the frequency
of occurrence of tones and chords in Western musical pieces. Tones and chords used with higher
frequency (and longer duration) correspond to events that are defined by music theory as having
more important functions in a given key (Budge, 1943; Francès, 1958; Krumhansl, 1990a).

This short description reveals a fundamental characteristic of the Western tonal music:
functions of tones and chords depend on the established key. The same event can define an in-
key or an out-of-key event and can take different levels of functional importance. For listeners,
understanding context dependency of musical events’ functions is crucial for the understanding
of musical structures, notably the multitude of musical structures that can be created on the
basis of twelve pitch classes. Music cognition research suggests that mere exposure to Western
musical pieces suffices to develop implicit, but nevertheless sophisticated, knowledge of the tonal
system. Just by listening to music in everyday life, listeners become sensitive to the regularities
of the tonal system without being necessarily able to verbalize them (Dowling & Harwood, 1986;
Francès, 1958; Krumhansl, 1990a). The seminal work by Krumhansl, Bharucha and colleagues
has investigated the perception of relations between tones and between chords as well as the
influence of a changing tonal context on the perceived relations (see Krumhansl 1990a for a
review). The data showed the cognitive reality of tonal and harmonic hierarchies for listeners
and the context dependency of musical tones and chords in perception and memorization.
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Figure 2.1: Schematic representations of the three organizational levels of the tonal system. Top)
12 pitch classes, followed by the diatonic scale in C Major. Middle) construction of three major
chords, followed by the chord set in the key of C Major key. Bottom) relations of the C Major
key with close major and minor keys (left) and with all major keys forming the circle of fifths
(right). (Tones are represented in italics, minor and major chords/keys in lower and upper case
respectively). (from Tillmann et al. 2001, Implicit Learning of Regularities in Western Tonal Music
by Self-Organization (pp. 175-184), Figure 1, in: Proceedings of the Sixth Neural Computation
and Psychology Workshop: Evolution, Learning, and Development, Springer)

2.1.3 Connectionist model of musical knowledge representation and its ac-

quisition

Bharucha (1987) proposed a connectionist account of tonal knowledge representation. In the
MUSACT model (i.e., MUSical ACTivation), tonal knowledge is conceived as a network of
interconnected units (Figure 2). The units are organized in three layers corresponding to tones,
chords, and keys. Each tone unit is connected to the chords of which that tone is a component.
Analogously, each chord unit is connected to the keys of which it is a member. Musical relations
emerge from the activation that reverberates via connected links between tone, chord and key
units. When a chord is played to MUSACT, the units representing the sounded component
tones are activated and activation reverberates between the layers until equilibrium is reached
(see Bharucha, 1987; Bigand et al., 1999 for more details). The emerging activation patterns
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reflect tonal and harmonic hierarchies of the established key: for example, units representing
harmonically related chords are activated more strongly than units representing unrelated chords.
The context dependency of musical events in the tonal system is thus not stored explicitly for
each of the different keys, but emerges from activation spreading through the network.

Figure 2.2: MUSACT model of tonal knowledge activation. The tone layer is the input layer,
which is connected to the chord layer (consisting of major and minor chords). The chord layer is
connected to the key layer (third layer). Adapted from Bharucha (1987).

In Tillmann et al. (2000), we take advantage of the learning possibilities of artificial neural
networks (e.g., connectionist models) to simulate tonal knowledge acquisition in nonmusician
listeners. For this purpose, unsupervised learning algorithms seem to be well suited: they
extract statistical regularities via passive exposure and encode events that often occur together
(Grossberg, 1970, 1976; Kohonen, 1995; Rumelhart & Zipser, 1985; von der Malsberg, 1973).
Self-organizing maps (Kohonen, 1995) are one version of unsupervised learning algorithms that
leads to a topological organization of the learned information.

To simulate tonal acculturation, a hierarchical network composed of two self-organizing
maps was exposed to short musical sequences (i.e., chord sequences). After learning, the con-
nections in the network have changed and the units have specialized for the detection of chords
and keys (the input layer coded the tones of the input material). The learned architecture is
associated with a spreading activation process (as in MUSACT) to simulate top-down influences
on the activation patterns. Interestingly, the learned connections and the activation patterns
after reverberation mirror the outcome of the hardwired network MUSACT, which has been
conceived as an idealized end-state of implicit learning processes (see Tillmann et al., 2000). In
collaboration with Michel Paindavoine (LE2I-CNRS, Dijon) and Charles Delbé (LEAD-CNRS,
Dijon), we are currently working on several extensions of this connectionist approach. One of the
projects concerns the construction of a set of “artificial musical ears” for this modeling approach.
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A step of auditory pre-processing allows decoding sound files with the acoustic complexity of
the musical stimuli. On the basis of this rich input, a network will be trained with a corpus of
real recordings containing a variety of musical pieces.

2.1.4 Studying implicit learning processes with artificial materials

Implicit learning processes are supposed to be at the origin of listeners’ tonal knowledge, ac-
quired in everyday life. Implicit learning processes are studied more closely in the laboratory
with artificial materials containing statistical regularities. In the seminal work by Reber (1967),
participants are asked to memorize grammatical letter strings in a first phase of the experiment,
but are unaware that any rules exist. During the second phase of the experiment, they are in-
formed that the previously seen sequences are produced by a rule system (which is not described)
and are asked to judge the grammaticality of new letter strings. Participants differentiate gram-
matical letter strings from new ungrammatical ones at better than chance level. Most of them are
unable to explain the rules underlying the grammar in free verbal reports (e.g., Altmann et al.,
1995; Dienes, Broadbent & Berry, 1991; Reber, 1967, 1989).

Various findings are convergent in demonstrating the cognitive capacity to learn complex
structures and regularities. The acquisition of regularities in the experimental material is not
restricted to visual events (e.g., letters, lights, shapes), but has been extended to auditory events,
such as sine waves (Altmann et al., 1995), musical timbres (e.g., gong, trumpet, piano, violin, voice
in Bigand, Perruchet & Boyer, 1998) or environmental sounds (e.g., drill, clap, steam in Howard &
Ballas, 1980, 1982). Recent studies started to consider the acoustical characteristics of the sound,
such as prosodic cues (Johnson & Jusczyk, 2001; Saffran et al., 1996, Experiment 2; Thiessen &
Saffran, 2003) or acoustical similarities (Tillmann & McAdams, 2004). The hypothesis is to test
whether the relation between the statistical regularities and regularities inherent to the acoustical
material could influence learning: conflicting information might hinder statistical learning, while
converging information might facilitate learning. Tonal acculturation might represent a beneficial
configuration: musical events appearing frequently together are also linked acoustically since
they share (real and virtual) harmonics. To investigate whether convergence with acoustical
features represent a facilitatory or even necessary condition for statistical learning, Tillmann
and McAdams (2004) systematically manipulated acoustical similarities between timbres so that
they either underline the statistical regularities of the timbre units, contradict these regularities
or a neutral to them. The outcome shows that listeners learned the statistical regularities of
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the complex auditory material and the manipulated surface characteristics did not affect this
statistical learning. The surface characteristics only affected grouping and overall preference bias
for the different materials. This outcome suggests that tonal acculturation does not necessarily
need the convergence between statistical and acoustical regularities. Supporting evidence can be
found in acculturation to Arabic music, which is lacking the convergence between statistical and
acoustic features (Ayari &McAdams, 2004). Together with the implicit learning study on twelve-
tone music (Bigand, D’Adamo et al., 2003), the data emits the rather encouraging hypothesis
about the possibility to learn regularities of new musical styles.

2.1.5 Implicit learning of new musical systems

Music is an interesting medium to investigate implicit learning processes for several reasons.
It is a highly complex structure of our environment that is too complex to be apprehended
through explicit thoughts and deductive reasoning. Musical events per se are of no importance,
yet musical pieces are more than a pleasing succession of coloured sounds. The psychological
effect of musical sounds comes from the complex multilevel relationships the musical events
pertain in a given piece (Meyer, 1956; Lerdahl & Jackendoff, 1983). The abstract associative
and architectonic relations that pertain between events that are not close in time define relevant
structures in music. These relations are difficult to articulate in an explicit way. Despite a
considerable tradition in music history, as well as in contemporary music theory, to formalize
the relevant structure of Western music (see Lerdahl & Jackendoff, 1983; Lerdahl 2001; Narmour,
2000), none of these frameworks provides a complete and satisfactory account of the Western
tonal musical grammar. A further interesting feature of music for research on implicit learning is
that musical structures are not conceived for explicit processing. It is even of crucial importance
for composers that listeners are sensitive to the structures that underlie a musical piece while still
being unaware of them. And in fact, the most common impression among a general audience
is of being unable to verbally describe what they perceive. In some instances, people are even
convinced that they no not perceive any underlying structure. The fact that musical events do
not refer to any specific object in the external world probably contributes to the difficulty of
apprehending musical structures in an explicit way.

A final interesting feature is that musical systems constantly evolve towards new musical
grammars. Being faced with masterpieces that derive from an entirely new musical system
is not an artificial situation for contemporary listeners and this raises a challenging issue for
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implicit learning theories. The considerable and persistent confusion reported by listeners to
contemporary music suggests that some musical grammars may be too artificial to be internalized
through passive exposure (McAdams, 1989). As a consequence, several cognitive constraints
have been delineated, which musical grammars should obey in order to be learnable (Lerdahl,
1988, 2001). Contemporary music challenges the ability of the human brain to internalize every
type of regularity. This raises a question with implications for cognitive science, music cognition,
and contemporary music research.

To the best of our knowledge, very little research has directly addressed implicit learning
with musical material (Bigand, Perruchet & Boyer, 1998; Dienes et al. 1991). Much research
in music cognition, however, indirectly deals with implicit learning processes by showing that
explicit learning is not necessary for the development of a sensitivity to the underlying rules of
Western music1 (see section above). Only a few studies have addressed the implicit learning of
new musical systems. Most of them have focused on the learning of serial music, a system that
has evolved in the West at the beginning of the 20th century. During this period, the tonal musical
system gradually waned and it was overtaken by serial systems of composition developed, in
particular, by Schoenberg (Griffiths, 1978). Serial works of music obey compositional rules that
differ from those that govern tonal music.

A serial musical piece is based on a specific temporal ordering of the twelve tones of the
chromatic scale, (i.e., the tones C, C#, D, D#, E, F, F#, G, G#, A, A#, B), irrespective of their octave
placement . The specific ordering of these tones defines the tone row of the piece. Each tone of
the row should be played before a given tone occurs for the second time. For example, if the piece
is made of the following row B-D#-D-F-C#-E-G-F#-Bb-A-C-G#, the C note should not be repeated
before all the other notes have been sounded, irrespective of octave placement2. In theory, each
tone of the row should have roughly the same frequency of occurrence on the overall of the piece.
This principle defines the most basic feature of the new musical system and was applied to the
musical stimuli of the present study.

The serial musical system defines several types of transformation that can be applied to
the tone row. First, the tone row can be transposed to each of the twelve tones it contains. The

1The tonal system designates the most usual style of music in the West, including, Baroque (Bach), Classic
(Mozart) and Romantic (Chopin) music , as well as folk music such as pop-music, jazz and latin-music.

2The 12 tones of the chromatic scale are repeated at different pitch heights, spaced by the interval called an octave.
A lower C and a higher C both belong to the same pitch class C. Listeners perceive tones of the same pitch class as
perceptually equivalent.
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other transformations in serial music consist in playing the row in retrograde order, in inversion
(intervals change in direction), and played in retrograde-inversion of the original row.

Each serial composition results from a complex combination of all of these transformations
that are applied on a specific tone row. Schoenberg argued that these manipulations would
produce an interesting balance between perceptual variety and unity. A critical point on which
he insisted was that the initial row must remain unchanged throughout the entire piece (1925).
In other words, Schoenberg’s cognitive intuition was that the perceptual coherence deriving
from the serial grammar was unlikely to be immediately perceived but would result from a
familiarization with the row.

Several experimental studies have addressed the psychological reality of the organization
resulting from serial musical grammar. The oldest, Francès (1958, exp. 6), consisted in presenting
participants with 28 musical pieces based on a specific tone row and requiring participants to
detect four pieces that violate the row. These odd pieces were actually derived from another
row (the foil row). The analysis of accurate response revealed that participants had considerable
difficulty in detecting the four musical pieces that violate the initial row. Moreover, the fact that
music theorists specialized in serial music did not respond differently from musically untrained
participants suggests that extensive exposure to serial works is not sufficient for the internal-
ization of this new musical system. Although Francès’ research is remarkable as pioneer work
in this domain, the study contained several weaknesses relative to the experimental design as
well as to the analysis of the data and this detracts from the impact of his conclusion. The most
noticeable problem concerns the foil row as it was strongly related to the tested row.

Empirical evidence supporting the perceptual reality of the rules of serial music was
reported by Dowling (1972) with short melodies of 5 tones. In Dowling’s experiment, participants
were trained to identify reversed, retrograde and retrograde-inversion of standard melodies of
5 tones of equal duration. The melodies were deliberately made with small pitch intervals in
order to improve performance. Dowling found that musically untrained participants managed
to identify above chance the rules of the serial music, with highest accuracy for the reversed
transform and the lowest for the retrograde inversion. Given that Dowling’s musical stimuli
were extremely short and simple, it is difficult to conclude that the rules of serial music may be
internalized from a passive hearing of serial music. Moreover, in a very similar experiment using
12 tones instead of 5, DeLannoy (1972) reported that participants did not success above chance
in distinguishing legal transformations of a standard musical sequence from those that violate
the serial rules.
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More recently, Dienes and Longuet-Higgins (2001) attempted to train participants in the
grammar of serial music by presenting them with 50 musical sequences that illustrated one of the
transformation rules of serial music. The last 6 notes of the row were a transform of the first 6 (i.e.,
a reverse, a retrograde or a retrograde inversion transformation). After this familiarization phase,
participants were presented with a new set of 50 sequences, some of them violating the rules
of serial music (i.e., the last 6 notes were not a legal transformation of the first 6). Participants
were required to differentiate grammatical pieces (according to serial rules) from nongrammatical
ones. Accuracy rates generally did not differ from chance level, which is consistent with Francès
(1956) and Delannoy (1972)’s finding.

A critical feature of the experiment of Dienes et al (1991) is that participants were never
exposed to a single tone row. Participants were trained with the transformational rules of serial
music, but these rules were always instantiated with a new set of tones. The temporal order of the
first 6 notes was chosen at random. As a consequence, the referential row is constantly moving
from one trial to the other. Such a procedure is very demanding since it consists in requiring
participants to learn abstract rules that are illustrated by a constantly changing alphabet. To
the best of our knowledge, there is no evidence in the domain of implicit learning domain to
show that learning can occur in such a situation. If participants do not have the opportunity
to be exposed to an invariant tone row in the training phase, it is not surprising that they fail
to exhibit sensitivity to the serial grammar in the test phase. It should be noticed that this
situation violates the basic principle of serial music, which postulates that only one row should
be used for one piece (Schoenberg, 1925). Krumhansl, Sandler and Sergeant’ study (1987) has
provided the strongest support for the psychological relevance of serial rules. Experiments 1
and 2 were run with simple forms of two tone rows. That is to say, the tone rows were played
with isochronous tones that never exceeded the pitch range of one octave. Experiments 3 and
4 were run with excerpts of Wind Quintets op. 26 and String Quartet op. 37 by Schoenberg.
The results of the classification tasks used in Experiments 2 and 3 demonstrated that participants
discriminated, at a level above chance, inversion, retrograde, and retrograde inversion of the two
tone rows with correct responses varying from 73% to 85% in Experiment 2, and from 60% to
80% in Experiment 3. At first glance, this high accuracy is surprising. However, it should be
noticed that participants were exposed to very simple forms of the tone rows a great number of
times during Experiment 1. It seems likely that this previous exposure helps to explain the good
performance. In other words, the peculiar importance of this study lies in the suggestion that
previous exposure to a tone row can be a critical feature for the perception of the rules of serial
music. The question remains however, as to the type of learning that actually occurred during
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this previous exposure. Given that all participants had received formal instruction in music, we
cannot rule out the possibility that they used their explicit knowledge of musical notation to
mentally represent the structures of the two rows. In order to define the nature (implicit/explicit)
of the knowledge in learning serial music rules, Bigand, D’Adamo and Poulin (2003) tested the
ability of musically untrained and trained listeners to internalize serial music rules with 80 canons,
especially designed by a professional composer. A set of 40 pieces were varied instantiations
(transpositions) of an first tone row (grammatical pieces). The other set of 40 pieces derived from
another row (nongrammatical pieces) but they were matched to the previous ones according to all
superficial features (rhythm, pitch ranges, overall form of melodic contour, duration, dynamics).
In a learning phase, half of these canons were presented two times to participants, who had
simply to indicate whether a given piece was heard for the first or for the second time. In
a test phase, 20 pairs of canons were played to the participants. In Experiment 1, each pair
contained a new canon composed from the same dodecaphonic series and a matched foil (Figure
3). Matched foils had the same musical surface (i.e., same pitch range, melodic contour and
rhythm), but derived from another dodecaphonic series. As a consequence, foils sounded very
much like the canon to which they were matched. The participants’ task was to indicate which
canon of the pair was composed in the same fashion as those listened during the learning phase
of the study. All participants reported extreme difficulties in performing the grammatical task.
Numerous participants complained that it was difficult to differentiate the two pieces of the pairs.
Both experimental groups nevertheless performed above chance, with 61% correct response for
nonmusicians and 62% of correct response for musicians, with no significant difference between
the two groups. In a second experiment (run with musically untrained listeners only), the stimuli
of the familiarization phase were identical to those of Experiments 1, whereas the stimuli of the
test phase were pairs in which one of the pieces was derived from a retrograde-inversion of the
tested row. The striking finding was that musically untrained listeners continued to discriminate
canons from foils above chance level (60% of correct responses), suggesting that even musically
untrained listeners are able to internalize through passive exposure complex regularities deriving
from the serial compositional rules. This conclusion is consistent with other finding showing
that the structures of Western contemporary music are processed in similar way by both groups
of listeners. Although a short exposition phase, listeners were sensitive to the structure of
contemporary twelve-tone music, which is based on frequency distributions of tone intervals.
These results shed some light on the implicit versus explicit nature of the acquired knowledge,
and the content of the information internalized through hearing the pieces.

Probably, the knowledge internalized during the listening of serial musical pieces was
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inaccessible to explicit thought of participants. If knowledge internalized through exposure was
represented at an explicit level, then experts should be more able than non experts participants
to explicitly use this knowledge. This should result in a clear-cut advantage of musical experts
over musically untrained listeners. If in turn the knowledge is represented at an implicit level,
no strong difference should be observed between musically expert and novice participants. The
present study converges with conclusions drawn from several other studies run with Western
tonal music and argues in favor of the implicit nature of the knowledge learnt.

2.2 Perspectives in musical learning: using multimedia tech-

nologies

2.2.1 How to optimize learning of Western tonal music with the help of

multimedia technologies?

Explaining the theoretical core of the Western musical system is one of the most difficult tasks
for music teachers, and it is generally assumed, at least in France, that this explanation should
only occur at the end of the curriculum in both music conservatoire and university departments.
Lerdahl’s Tonal Pitch Space theory (TPST) is likely however to contribute to the development
of music tools that would help music lovers as well as those at an early stage of musical study
to improve their understanding of Western music. The TPST can be considered as an idealized
knowledge representation of tonal hierarchy. The psychological representation of knowledge
poses a certain number of problems for which different solutions have been proposed (Krumhansl,
Bharucha, & Castellano, 1982; Krumhansl, Bharucha, & Kessler, 1982; Krumhansl & Kessler,
1982; Longuet-Higgins, 1978; Shepard, 1982). For all these approaches, tonal hierarchies are
represented in the form of a multidimensional space in which the distances of chords from
the instantiated tonic correspond to their relative hierarchical importance. The more important
the chord is, the smaller the distance. Lerdahl successfully explains the way in which the
TPST synthesizes various existing musicological and psychological models and suggests new
solutions. In my opinion, the crucial contribution of the model is the description of a formal
means of quantifying the tonal distance maintained between any two events belonging to any
key, a quantification which no other approach has accomplished.

The proposed model outlines many developments to the one initially described in an earlier
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series of articles (Lerdahl, 1988; Lerdahl, 1991; Lerdahl, 1996). For readers from a psychological
background who may not be familiar with this type of approach, I will summarize the basic
ideas3 . According to the theory, tonal hierarchy is represented in three embedded levels. The
first two (the pitch class level and chordal level) represent within-key hierarchies between tones
and chords. The third level represents the distances between keys (Region level). The pitch class
level (basic space) represents the relation between the 12 pitch classes. It contains five sublevels
(from level a to e), corresponding to the chromatic level (level e), diatonic level (level d), triadic
level (level c), fifth level (level b) and the tonic level (level a). In a given context, a tonic tone, part
of a tonic chord, will be represented at all five levels. The dominant and the third tones of a tonic
chord will be represented at four levels (from b to e) and three levels (from c to e) respectively.
A diatonic but non-chordal tone will be represented at two levels (from d to e). A non-diatonic
chord will be represented at only one level (level e). The level at which a given pitch class is
represented thus reflects its importance in the tonal context. For example, in the context of a C
major chord in the C major key, the tone C would be represented at all levels (from a to e), the
tone G, at four levels (from b to e), the tone E, at three levels (from c to e) and the diatonic of the
C major scale will be represented at two levels only (from d to e).

This representation has two implications. First it allows an understanding as to why notes
which are distant in interval (C-E-G-C) can nevertheless be perceived to be as close as adjacent
notes (C-D-E-F-G): though forming distant intervals, these notes are adjacent at the triadic level in
the representational space (level c). Moreover, the model of musical tension bound to these forces
of attraction constitutes a very promising development for psychology. The second implication
concerns the computation of distances between chords. Let’s return to the following example. If
the C major chord was played in the context of G major, the tone F# will be represented at two
levels (from d to e), while the tone F would remain at only one level (level e). This would produce
one change in pitch class. The central idea of the TPST is to consider the number of changes that
occurs in this basic space when the musical context is changed (as in the present example) as a
way to define the pitch space distance between two musical events.

The second level of the model involves the chordal level, that is the distance between
chords of a given key. The model computes the distances separating the seven diatonic chords
taking into account the number of steps that separate the roots of the chords along the circle
of fifths (C-G-D-A-E-B-F) and the number of changes in pitch class level created by the second
chord. Let us consider the distance between the C and G major chords in the key of C major.

3See Pineau and Tillmann (2001) and Bigand (1993b) for an introduction in French.
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The G major chord induces 4 changes in the pitch class level. The dominant tone D is now
represented at 2 more levels (from b to e), the third tone B, at one supplementary level (from c to
e) and the tonic tone at one supplementary level (from a to e). The number of steps that separate
the two chords on the circle of fifths equals 1. As a consequence the tonal pitch space distance
between these two chords in this key context equals 5. Following the same rationale, the distance
in pitch space between the tonic and the subdominant chords equals 5. The distance between the
tonic and the vi equals 7, as does the distance between the tonic and the mediant chord (iii). The
distance between the tonic chord and the supertonic (ii) equals 8 as does the distance between
the tonic and the diminished seventh chord. This model quantifies the strength of relations in
harmonic progression. Accordingly the succession I-vi corresponds to a harmonic progression
that is tenser than the succession I-IV.

The third level of the TPS model involves the regional level. It evaluates distances between
chords of different regions by taking into account the distances between regions as well as the
existence of a pivot region. The regional space of the TPST is created by combining the cycle of fifth
and the parallel/relative major-minor cycle. That is to say, the shortest distance in regional space
(i.e., 7) is found between a given major key (say C major) and its dominant (G) its subdominant
(F), its parallel minor (C minor) and its relative minor keys (A minor). The greatest distance (30) is
found between a major key and the augmented fourth key (C and F#). The tonal distance between
two chords of different keys depends upon how the second chord is musically interpreted. For
example the distance between a C major chord in the context of C major and a C# minor chord
would equal 23 if the C# is interpreted as a vi of the E major key. The distance equals 30 if the C#
is understood as the tonic chord of Db minor key. As a consequence, the distance in pitch space
between two events that belong to distant keys depends upon the selected route between the two
events. In most cases, the selected route is defined by the overall musical context. By default,
the model computes this distance according to the principle of shortest path: “the pitch-space
distance between two events is preferably calculated for the smallest value” (p. 74). The shortest
path principle is psychologically plausible. It has the heuristic merit of being able to influence
the analysis of time span and prolongational reduction by preferring analyses that reduce the
value of these distances. The implementation of this principle in an artificial system should fairly
easily lead to “intelligent” systems capable of automatic harmonic analysis.

One of the main features of the TPST for an efficient learning tool is to bridge the intuitive
mental representations of the untrained with the mental representations of experts. Current
developments in multimedia offer considerable opportunity to evolve the naive representation
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of the inexpert in a given domain. The basic strategy consists in combining different modes
of knowledge representation (e.g.,sounds, image, language, animation, action) to progressively
transform the initial mental representation into a representation of the domain that fits as closely
as possible with that of experts. In the present case, the use of a space to describe the inner
structure of the Western tonal system considerably facilitates this transformation. The mental
representation of a complex system in a two or three-dimensional space is a metaphor that is
intuitively accessible even for a child, and which is common in a large variety of domains. A
musical learning tool may thus consist in videotape (or animation) that illustrates how music
progresses through pitch space. When listening to a musical piece, the video displays in real time
every distance traveled through pitch space. After having listened several times to the piece, the
journey through pitch space of the piece would be stored in memory in both visual and auditory
format. After the hearing of several pieces of the same stylistic period, the journeys through
pitch space specific to this style would be stored in memory. After hearing several pieces of the
Western music repertoire, the listener would have created a mental representation of the overall
structure of the tonal pitch space that fits with that of the expert. From a teaching perspective, the
interesting point is that this mental representation will emerge from mere exposure to musical
pieces presented with this music tool. In other words, the tool allows a passive exploration of the
tonal pitch space by visualizing in a comprehensible format the deep harmonic structure of the
heard pieces. Only a few musical terms will be required to understand one of the most critical
features of Western music.

The structure of the space can be adapted at will and should notably be adjusted to suit the
age of the user. At this early stage of the developmental process, we chose a structure that mimics
real space with planets and satellites. Given the circularity of the Western musical space, only a
portion of the space can be seen at a given time point, but this portion will progressively change
when the music is moving from one region to another. A planet metaphorically represents a
key, while the satellites represent the seven diatonic chords. Satellites corresponding to played
chords are lit up in yellow, thus representing the route of the harmonic progressions within each
key. The colour of the planet representing the key intensifies when several chords from the
key are played, thus imitating the fact that a feel for tonality increases with its duration. When
the music modulates to another key, chords from both the initial key and the new key light
up, and the animation turns towards the new key, and then another portion of the tonal pitch
space is discovered. When the piece of music progresses rapidly towards distant keys, as in the
case of Chopin’s Prelude in E major, the pivot keys are briefly highlighted and passed quickly.
The journey depends upon the modulations that have occurred. With the present tool, the user
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can associate the visual journey through tonal pitch space with the auditory sensation created
by the music. The animation contains sufficient music theoretic information to allow the user
to describe this musical journey in terms that are close to those employed by musicologists. Of
course, this animation may also bring to the fore other important elements for the comprehension
of harmonic processes, such as the arrangement of chords and voice leading. Connected to a
MIDI instrument, it may equally be transformed into a tool for tonal music composition. By
chaining chords together, the user can follow his or her journey through tonal space, and explore
the structure of the tonal space.

2.2.2 Creating learning multimedia tools for music with the contribution of

cognitive sciences and ergonomics

The first multimedia works comprising music began to emerge at the beginning of the 90th. Since
then, the number and diversity of musical multimedia products (CD-Rom, DVD-Rom, Web site)
have been increasing considerably. However, multimedia products helping the user to integrate
musical structures are rare. If we want to propose successful learning multimedia tools the main
question is how and why to use multimedia resources. We are going to present some principles of
cognitive ergonomics that seem fundamental for the multimedia dedicated to music education.
These principles will be illustrated by two multimedia learning tools invented by the LEAD.

The first principle is that the vantage point of music learning tools should be nonexperts’
immediate representation formats. They have to combine in an advantageous way the multi-
modal possibilities of representation to make these initial representations evolve towards those
of experts (principle of availability). Multimodality should be used as a powerful means to
clarify the structure of complex systems, and to allow the user to easily develop a mental rep-
resentation of the system compatible with the one of experts. The aim of the project carried out
by the LEAD, was to give listeners the access to a musical system often considered as complex
(contemporary music) but potentially of high educational value. It was an ideal opportunity to
try out a multimedia approach of a complex system.

Reduction of information and optimisation of presentation forms

One of the principal problems regarding multimedia is an overload of presentation forms. Mul-
tiplication of presentation forms (text, picture, animation, video, sound, etc.) often entails a
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cognitive cost that is high compared to the benefits in terms of training. This profusion of pre-
sentation forms often led to an explosion of the quantity of information presented to the user,
without an objective analysis of the adaptation of presentation forms used or of the combination
of the modes of learning (visual & auditory, verbal & visual, etc.) available in the tools proposed.
Such information overload is often accompanied by an organization of knowledge based on
models that are not adapted to the initial knowledge of a user. The second fundamental principle
in producing multimedia learning tools is thus the reduction of the quantity of information and
the optimization of the form in which it is presented. Properly used multimodality, particularly
concerning the interaction between vision and audition, improves attending processes, memo-
rization of musical material, and develops the capacity to represent the musical structures. In
music, there are several forms of presentation of the sound phenomenon. The score is the best
known of them. However, it requires user’s specific knowledge and a regular musical practice.
There are other forms of music presentation: tablature of string instruments, sonagram (spec-
trum), wave form (amplitude), tracks of a music software or piano-roll of a sequencer, etc. All
these presentation modes can certainly be employed in multimedia, but they often require user’s
expert knowledge.

For the project carried out by the LEAD, we sought graphic representations that could
advantageously replace the experts presentation forms. These graphics consist of simple forms
symbolizing one or more elements of musical structure (melody contour, texture, harmonic
density, rhythmic pattern, etc). The principal constraint is that these forms should not require
additional coding, otherwise they would go against the aims in view, but induce the musical
structure in an intuitive and direct way. Other presentation forms, which require expert knowl-
edge, never intervene in the initial presentation of a musical excerpt. Figures 5 and 6 show two
forms of presentation of a sequence of chords in the piece Couleur de la Cité Céleste by Oliver
Messiaen. The constitution in terms of tones is identical for the 13 chords. It is the register,
duration and the change in instrumentation between the various instruments which give listener
an impression of a succession of sound colours (klangfarbenmelodie). The excerpt is represented
by blocks of colours whose width corresponds to the duration of chords. Their height symbolizes
the extent of chords (from the lowest to the highest) and the position on the scale (on the left) rep-
resents the register. Blocks appear in synchrony with sound. With this type of representation, it is
easy, for any non expert listener, to perceive a degree of similarity between certain chords. Based
on this type of representation, a user may intuitively become aware of the external structure of
a sequence, but it is not sufficient yet to form a precise representation of the musical structure.
Figure 6 represents the same sequence of chords in a score. In order to better focus listener’s
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attention on the harmonic structure, the real duration of chords was replaced by the duration
equalized for all chords. However, in contrast with a graphic representation of sound that was
privileged here, this mode of representation is to give the users an opportunity to deconstruct
musical structure. They can choose what they will listen to: the whole sequence, each chord
separately, groups of instruments within a chord or each note of a chord.

Synthesis of knowledge and implementation of continuity

Learning multimedia tools should synthesize the knowledge of music in order to make it available
to nonexperts. Thus it is necessary to implement this knowledge in a way adapted to the initial
knowledge of the user. In the case of music (complex music in particular), it is important to
raise the question of perceptibility of musical structures. It is a question of knowing exactly
what is to be heard. In our project, the pieces were selected according to the cognitive problems
they present (relating to their aesthetic differences). For example, Couleur de la Cité Céleste by
Messiaen, is representative of the aesthetics where colour and timbre are of major concern. It is
composed of a large variety of musical elements that follow one another to form a sound mosaic.
Globally, a multimedia learning tool must favour categorization and memorization of musical
material, in order to allow emergence of the mental representation of temporal organization of a
piece. Figure 7 shows the main page of the multimedia learning tool of Messiaen’s piece. One
can see the representation of the formal structure of the excerpt in the centre of the screen. Eight
icons on the right and on the left of the screen give access to eight links (history of the piece,
composer’s biography, the orchestra, a large-scale structure of the excerpt, and four of the main
materials of the piece: texts and metaphors of the Apocalypse, Gregorian chant, colours, and
bird songs).

One of the crucial problems posed to the pedagogy of listening is that of attention. Per-
ception of musical structures is strongly dependent on the attending processes. In the simplest
cases, these processes are guided by the music itself (when, for example, a composer emphasizes
the principal melody by a discrete accompaniment) or by the performance of a player (when this
one chooses to emphasize such element of structure). However, most of the time, music has a
complex and deliberately ambiguous structure. Contrary to the traditional methods in music
education, that exert these capacities with sorrow, multimedia tools make it possible to focus
listener’s attention on internal or external elements of musical structure.

A part of our project consisted in seeking in the resources of multimedia the means of
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guiding attending processes and, beyond, of favouring the memorization and the comprehension
of the musical structures. The schema of the formal structure of the beginning of Couleur de la Cité
Céleste (Figure 7) was conceived to facilitate mental representation of a complex formal structure
in which short musical sequences follow one another in form of a mosaic that would emerge
while we perceive it. This page does not contain any oral or textual explanation. Awareness
of the structure should emerge solely from the visual and auditive interaction. The choice of
a circular representation corresponds to the shape of a work which has no beginning or end
and whose elements return in a recurrent way. Each piece of the mosaic corresponds to a short
musical sequence. Each colour represents a type of musical material (e.g. blue for bird songs).
Nuances of colours differentiate the variations inside each category of sequence. Animation
takes into account the cognitive processes of attention and memorization. At the beginning of
animation, the stained-glass scheme is empty. Progressively, as music unfolds, empty spaces are
filled until the stained glass is completed (all the sequences were played). When a sequence is
finished, stained glass that represents it is obscured gradually (approximately 6 to 7 seconds,
according to the maximum duration of the perceptual present; Fraisse, 1957). The clearness of
the piece of the stained glass solidifies at a very low rate as if there remained a remote trace in
memory about it. When an identical sequence returns, the part previously activated is briefly
reactivated then turns over in stand-by. This multimedia artifice supports the categorization
and the memorization of materials. It also makes it possible to establish bonds of similarity and
consequently gives direction to the formal structure which proceeds under the eyes of the user.
This example showed how it is possible to focus the attention on sequential events. It is also
useful to focus the attention of the user on simultaneous events. Figure 8 shows the animated
representation of the formal structure of the beginning of Eight Lines by S. Reich. Contrary to
the Messiaen’s piece represented by a stained glass, the one by Reich, whose unfolding follows
a linear trajectory, is represented by 8 rectangular boxes. Coloured rectangular paving stones
indicate the moment of appearance and the duration of intervention of each instrumental part.
Synchronization between the sound and the image is visualized by a vertical marker. When an
instrument is active, its coloured paving stone is cleared up. In figure 8, the active instrumental
parts are the parts of viola and violoncello (in bottom), low clarinet and flute (in top). Inside
the paving stone, graphic animations, always synchronized with music, emerge to focus the
attention on melody and the rhythmic structure of the instrumental part. The points indicate the
number, the duration and the height of the notes, the features profile melody contour.

New technologies of sound processing may provide other new possibilities for multimedia
music learning tools . The sound files obtained with these techniques or especially developed
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software can be integrated into the multimedia in order to improve the learning tools. The
possibility of an interactive deconstruction and reconstruction of the musical structures combined
to specific visual interface is certainly the most promising perspective for the closest future.

Conclusion

The power of the implicit learning is without doubt a major contribution to the research on
the musical cognition. It reduces the distance between listener nonmusicians and experts and
leads to question the common practices in music education. Implicit learning supplies a solid
scientific base, with the contributions of cognitive psychology (memory and attending process),
ergonomics and new technologies in order to create creating multimedia learning tools for music.
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Figure 2.3: Example of pairs of matched canons composed with two different rows (grammatical
piece in the higher panel, nongrammatical piece in the lower panel), but both with the same
superficial features (rhythm, pitch ranges, overall form of melodic contour, duration, dynamics).
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Figure 2.4: Figure 4 illustrates a musical tool directly derived from TPST and which is currently
being developed in our team.

4.
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Figure 2.5: Graphic representation of a chord sequence of Couleurs de la Cité céleste by Olivier
Messiaen
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Figure 2.6: Score representation of the same chord sequence as 2.5 of Couleurs de la Cité céleste
by Olivier Messiaen
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Figure 2.7: Main page of the multimedia learning tool of Couleurs de la Cité céleste by Olivier
Messiaen
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Figure 2.8: Formal structure represented in the multimedia learning tool of Eight Lines by S.
Reich
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3.1 Introduction

Research in intelligent music processing is experiencing an enormous boost these days due to
the emergence of the new application and research field of Music Information Retrieval (MIR). The
rapid growth of digital music collections and the concomitant shift of the music market towards
digital music distribution urgently call for intelligent computational support in the automated
handling of large amounts of digital music. Ideas for a large variety of content-based music
services are currently being developed in music industry and in the research community. They
range from content-based music search engines to automatic music recommendation services,
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from intuitive interfaces on portable music players to methods for the automatic structuring and
visualisation of large digital music collections, and from personalised radio stations to tools that
permit the listener to actively modify and ‘play with’ the music as it is being played.

What all of these content-based services have in common is that they require the computer
to be able to ‘make sense of’ and ‘understand’ the actual content of the music, in the sense of being
able to recognise and extract musically, perceptually and contextually meaningful (‘semantic’)
patterns from recordings, and to associate descriptors with the music that make sense to human
listeners.

There is a large variety of musical descriptors that are potentially of interest. They range
from low-level features of the sound, such as its bass content or its harmonic richness, to high-
level concepts such as “hip hop” or “sad music”. Also, semantic descriptors may come in the
form of atomic, discrete labels like “rhythmic” or “waltz”, or they may be complex, structured
entities such as harmony and rhythmic structure. As it is impossible to cover all of these in one
coherent chapter, we will have to limit ourselves to a particular class of semantic desciptors.

This chapter, then, focuses on methods for automatically extracting high-level atomic
descriptors for the characterisation of music. It will be shown how high-level terms can be
inferred via a combination of bottom-up audio descriptor extraction and the application of
machine learning algorithms. Also, it will be shown that meaningful descriptors can be extracted
not just from an analysis of the music (audio) itself, but also from extra-musical sources, such as
the internet (via ‘web mining’).

Systems that learn to assign labels must be evaluated in systematic, controlled experiments.
The most obvious and direct way is via classification experiments, where the labels to be assigned
are interpreted as distinct classes. In particular, genre classification, i.e., the automatic assignment
of an appropriate style label to a piece of music, has become a popular benchmark task in the MIR
community (for many reasons, not the least of them being the fact that genre labels are generally
much easier to obtain than other, more intuitive or personal descriptors). Accordingly, the
current chapter will very much focus on genre classification as the kind of benchmark problem
that measures the efficacy of machine learning (and the underlying descriptors) in assigning
meaningful terms to music. However, in principle, one can try to predict any other high-level
labels from low-level features, as long as there is a sufficient number of training examples
with given labels. Some experiments regarding non-genre concepts will be briefly described in
section 3.3.4, and in section 3.4.2 we will show how textual characterisations of music artists can
be automatically derived from the Web.
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The chapter is structured as follows. Section 3.2 deals with the extraction of music de-
scriptors (both very basic ones like timbre and more abstract ones like melody or rhythm) from
recordings via audio analysis. It focuses in particular on features that have been used in recent
genre classification research. Section 3.3 shows how the gap between what can be extracted
bottom-up and more abstract, human-centered concepts can be partly closed with the help of
inductive machine learning. New approaches to infer additional high-level knowledge about
music from extra-musical sources (the Internet) are presented in section 3.4. Section 3.5, finally,
discusses current research and application perspectives and identifies important questions that
will have to be addressed in the future.

3.2 Bottom-up Extraction of Descriptors from Audio

Extracting descriptors from audio recordings to characterise aspects of the audio content is not
a new area of research. Much effort has been spent on feature extraction in areas like speech
processing or audio signal analysis. It is impossible to give a comprehensive overview of all
the audio descriptors developed over the past decades. Instead, this chapter will focus solely
on descriptors that are useful for, or have been evaluated in, music classification tasks, in the
context of newer work in Music Information Retrieval. The real focus of this chapter is on
extracting or predicting higher-level descriptors via machine learning. Besides, a more in-depth
presentation of audio and music descriptors is offered in another chapter of this book [REF. TO
UPF CHAPTER], so the following sections only briefly recapitulate those audio features that
have played a major role in recent music classification work.

Connected to the concept of classification is the notion of music or generally sound sim-

ilarity. Obviously, operational similarity metrics can be used directly for audio and music clas-
sification (e.g., via nearest-neighbour algorithms), but also for a wide variety of other tasks.
In fact, some of the music description schemes presented in the following do not produce fea-
tures or descriptors at all, but directly compute similarities; they will also be mentioned, where
appropriate.
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3.2.1 Simple Audio Descriptors for Music

Classification

This section describes some common simple approaches to describe properties of audio (music)
signals. For all algorithms discussed here, the continuous stream of audio information is cut
into small, possibly overlapping fragments of equal length, called frames. The typical length of a
frame is about 20 ms. Usually, for each frame one scalar value per descriptor is calculated, which
can be done either on the time-domain or the frequency-domain representation of the signal. To
obtain a (scalar) descriptor that pertains to an entire audio track, the values of all frames can be
combined by, for example, applying simple statistics such as mean and standard deviation of all
individual values.

Time-Domain Descriptors

On the time-domain representation of the audio signal, several descriptors can be calculated.
An algorithm that mainly describes the power envelope of the audio signal is Root Mean Square

(RMS): The individual values appearing in each frame are squared, and the root of the mean of
these values is calculated. These values might be combined as described above, or by calculating
which fraction of all RMS values is below (e.g.) the average RMS value of a piece (Low Energy

Rate). Comparable to the RMS values are the Amplitude Envelope values, which are the maximum
absolute values of each frame. The amplitude envelope and RMS descriptors are commonly used
as a first step in algorithms that detect rhythmic structure.

The time-domain representation might also be used to construct measures that model the
concept of Loudness (i.e. the perceived “volume”). For example, a simple and effective way is to
take the 0.23th power of the RMS values.

Another possibility is to approximately measure the perceived brightness with the Zero

Crossing Rate. This descriptor simply counts how often the signal passes zero-level.

Also, the time-domain representation can be used to extract periodicity information from
it. Common methods are autocorrelation and comb filterbanks. Autocorrelation gives for each
given time lag the amount of self-similarity of the time domain samples by multiplying the
signal with a time-lagged version of itself. In the comb filterbank approach, for each periodicity
of interest, there is a comb filter with the appropriate resonance frequency.
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Frequency-Domain Descriptors

A number of simple measures are commonly applied to describe properties of the frequency
distribution of a frame:

• The Band Energy Ratio is the relation between the energy in the low frequency bands
and the energy of the high frequency bands. This descriptor is vulnerable to producing
unexpectedly high values when the energy in the low energy bands is close to zero.

• The Spectral Centroid is the center of gravity of the frequency distribution. Like the zero
crossing rate, it can be regarded as a measure of perceived brightness or sharpness.

• The Spectral Rolloff frequency is the frequency below which a certain amount (e.g. 95%) of
the frequency power distribution is concentrated.

These descriptors are calculated individually for each frame. The Spectral Flux is modeled
to describe the temporal change of the spectrum. It is the Euclidean distance between the
(normalised) frequency distributions of two consecutive frames, and can be regarded as a measure
of the rate at which the spectrum changes locally.

The descriptors mentioned so far represent rather simple concepts. A more sophisticated
approach are the Mel Frequency Cepstral Coefficients (MFCCs), which model the shape of the
spectrum in a compressed form. They are calculated by representing the spectrum on the
perceptually motivated Mel-Scale, and taking the logarithms of the amplitudes to simulate
loudness perception. Afterwards, the discrete cosine transformation is applied, which results in
a number of coefficients (MFCCs). Lower coefficients describe the coarse envelope of the frame’s
spectrum, and higher coefficients describe more detailed properties of the spectrum envelope.
Usually, the higher-order MFCCs are discarded, and only the lower MFCCs are used to describe
the music.

A popular way to compare two recorded pieces of music using MFCCs is to discard the
temporal order of the frames, and to summarise them by clustering (e.g., Logan and Salomon
[2001], Aucouturier and Pachet [2002a]). In the case of Aucouturier and Pachet [2002a], for in-
stance, the clustered MFCC representations of the frames are described by Gaussian Mixture
Models (GMMs), which are the features for the piece of music. A way to compare GMMs is
sampling: one GMM is used to produce random points with the distribution of this GMM, and
the likelihood that the other GMM produces these points is checked.
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It might seem that discarding the temporal order information altogether ignores highly
important information. But recent research Flexer et al. [2005] has shown that MFCC-based
description models using Hidden Markov Models (which explicitly model the temporal structure
of the data) do not improve classification accuracy (as already noted in Aucouturier and Pachet
[2004]), though they do seem to better capture details of the sound of musical recordings (at least
in terms of statistical likelihoods). Whether this really makes a difference in actual applications
remains still to be shown.

The interested reader is referred to Chapter XXX/UPF of this book for a much more
comprehensive review of audio descriptors and music description schemes.

3.2.2 Extracting Higher-level Musical Patterns

The basic intuition behind research on classification by higher-level descriptors is that many
musical categories can be defined in terms of high-level musical concepts. To some extent it is
possible to define musical genre, for example, in terms of the melody, rhythm, harmony and
instrumentation which are typical of each genre. Thus genre classification can be reduced to a set
of subproblems: recognising particular types of melodies, rhythms, harmonies and instruments.
Each of these subproblems is interesting in itself, and has attracted considerable research interest,
which we review here.

Early work on music signal analysis is reviewed by Roads Roads [1996]. The problems
that received the most attention were pitch detection, rhythm recognition and spectral analysis,
corresponding respectively to the most important features of music: melody, rhythm and timbre
(harmony and instrumentation).

Pitch detection is the estimation of the fundamental frequency of a signal, usually as-
suming it to be monophonic. Common methods include: time domain algorithms such as
counting of zero-crossings and autocorrelation; frequency domain methods such as Fourier anal-
ysis and the phase vocoder; and auditory models which combine time and frequency domain
information based on an understanding of human auditory processing. Recent work extends
these methods to find the predominant pitch (usually the melody note) in polyphonic mixtures
Goto and Hayamizu [1999], Gómez et al. [2003].

The problem of extracting rhythmic content from a musical performance, and in particular
finding the rate and temporal location of musical beats, has attracted considerable interest. A
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review of this work is found in Gouyon and Dixon [2005]. Initial attempts focussed on rhythmic
parsing of musical scores, that is without the tempo and timing variations that characterise
performed music, but recent tempo and beat tracking systems work quite successfully on a wide
range of performed music. The use of rhythm for classification of dance music was explored in
Dixon et al. [2003, 2004].

Spectral analysis examines the time-frequency content of a signal, which is essential for
extracting information about instruments and harmony. Short time Fourier analysis is the most
widely used technique, but many others are available for analysing specific types of signals, most
of which are built upon the Fourier transform. MFCCs, already mentioned in section 3.2.1 above,
model the spectral contour rather than examining spectral content in detail, and thus can be seen
as implicitly capturing the instruments playing (rather than the notes that were played). Specific
work on instrument identification can be found in Herrera et al. [2003].

Regarding harmony, extensive research has been performed on the extraction of multiple
simulateous notes in the context of automatic transcription systems, which are reviewed by
Klapuri Klapuri [2004]. Transcription typically involves the follow steps: producing a time-
frequency representation of the signal, finding peaks in the frequency dimension, tracking these
peaks over the time dimension to produce a set of partials, and combining the partials to produce
a set of notes. The differences between systems are usually related to the assumptions made
about the input signal (for example the number of simultaneous notes, types of instruments,
fastest notes, or musical style), and the means of decision making (for example using heuristics,
neural nets or probabilistic reasoning).

Despite considerable successes, the research described above makes it increasingly clear
that precise, correct, and general solutions to problems like automatic rhythm identification
or harmonic structure analysis are not to be expected in the near future — the problems are
simply too hard and would require the computer to possess the kind of broad musical experience
and ‘knowledge’ that human listeners seem to apply so effortlessly when listening to music.
Recent work in the field of Music Information Retrieval has thus started to focus more on
approximate solutions to problems like melody extraction Eggink and Brown [2004] or chord
transcription Yoshioka et al. [2004], or on more specialised problems, like the estimation of global
tempo Alonso et al. [2004] or tonality Gómez and Herrera [2004], or the identification of drum
patterns Yoshii et al. [2004].

Each of these areas provides a limited high level musical description of an audio signal.
Systems have yet to be defined which combine all of these aspects, but this is likely to be seen in
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the near future.

3.3 Closing the Gap: Prediction of High-level Descriptors via

Machine Learning

While the bottom-up extraction of features and patterns from audio continues to be a very active
research area, it is also clear that there are strict limits as to the kinds of music descriptions that
can be directly extracted from the audio signal. When it comes to intuitive, human-centered
characterisations such as ‘peaceful’ or ‘aggressive music’ or highly personal categorisations such
as ‘music I like to listen to while working’, there is little hope of analytically defining audio
features that unequivocally and universally define these concepts. Yet such concepts play a
central role in the way people organise and interact with and ‘use’ their music.

That is where automatic learning comes in. The only way one can hope to build a machine
that can associate such high-level concepts with music items is by having the machine learn the
correct associations between low-level audio features and high-level concepts, from examples
of music items that have been labeled with the appropriate concepts. In this section, we give
a very brief introduction to the basic concepts of machine learning and pattern classification, and
review some typical results with machine learning algorithms in musical classification tasks. In
particular, the automatic labeling of music pieces with genres has received a lot of interest lately,
and section 3.3.3 focuses specifically on genre classification. Section 3.3.4 then reports on recent
experiments with more subjective concepts, which clearly show that a lot of improvement is still
needed. One possible avenue towards achieving this improvement will then be discussed in
section 3.4.

3.3.1 Classification via Machine Learning

Inductive learning as the automatic construction of classifiers from pre-classified training exam-
ples has a long tradition in several sub-fields of computer science. The field of statistical pattern

classification Duda et al. [2001], Hastie et al. [2001] has developed a multitude of methods for
deriving classifiers from examples, where a ‘classifier’, for the purposes of this chapter, can be
regarded as a black box that takes as input a new object to be classified (described via a set of
features) and outputs a prediction regarding the most likely class the object belongs to. Classifiers
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are automatically constructed via learning algorithms that take as input a set of example objects
labeled with the correct class, and construct a classifier from these that is (more or less) consistent
with the given training examples, but also makes predictions on new, unseen objects — that is,
the classifier is a generalisation of the training examples.

In the context of this chapter, training examples would be music items (e.g., songs) charac-
terised by a list of audio features and labeled with the appropriate high-level concept (e.g., “this
is a piece I like to listen to while working”), and the task of the learning algorithm is to produce
a classifier that can predict the appropriate high-level concept for new songs (again represented
by their audio features).

Common training and classification algorithms in statistical pattern classification Duda et al.
[2001] include nearest neighbour classifiers (k-NN), Gaussian Mixture Models, neural networks
(mostly multi-layer feed-forward perceptrons), and support vector machines Cristianini and Shawe-Taylor
[2000].

The field of Machine Learning Mitchell [1997] is particularly concerned with algorithms
that induce classifiers that are interpretable, i.e., that explicitly describe the criteria that are asso-
ciated with or define a given class. Typical examples of machine learning algorithms that are
also used in music classification are decision trees Quinlan [1986] and rule learning algorithms
Fürnkranz [1999].

Learned classifiers must be evaluated empirically, in order to assess the kind of prediction
accuracy that may be expected on new, unseen cases. This is essentially done by testing the
classifier on new (labeled) examples which have not been used in any way in learning, and
recording the rate of prediction errors made by the classifier. There is a multitude of procedures
for doing this, and a lot of scientific literature on advantages and shortcomings of the various
methods. The basic idea is to set aside a part of the available examples for testing (the ‘test
set’), then inducing the classifier from the remaining data (the ‘training set’), and then testing
the classifier on the test set. A systematic method most commonly used is known as n-fold cross-

validation, where the available data set is randomly split into n subsets (‘folds’), and the above
procedure is carried out n times, each time using one of the n folds for testing, and the remaining
n−1 folds for training. The error (or conversely, accuracy) rates reported in most learning papers
are based on experiments of this type.

A central issue that deserves some discussion is the training data required for learning.
Attractive as the machine learning approach may be, it does require (large) collections of rep-
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resentative labeled training examples, e.g., music recordings with the correct categorisation
attached. Manually labeling music examples is a very laborious and time-consuming process,
especially when it involves listening to the pieces before deciding on the category. Additionally,
there is the copyright issue. Ideally, the research community would like to be able to share com-
mon training corpora. If a researcher wants to test her own features in classification experiment,
she needs access to the actual audio files.

There are some efforts currently being undertaken in the Music Information Retrieval com-
munity to compile large repositories of labeled music that can be made available to all interested
researchers without copyright problems. Noteworthy examples of this are Masataka Goto’s
RWC Music Database (http://staff.aist.go.jp/m.goto/RWC-MDB), the IMIRSEL (International Mu-
sic Information Retrieval System Evaluation Laboratory) project at the University of Illinois at
Urbana-Champaign (http://www.music-ir.org/evaluation — see also Downie et al. [2004]), and
the new FreeSound Initiative (http://freesound.iua.upf.edu).

3.3.2 Learning Algorithms Commonly Used in Music Classification

In this section, we briefly review some of the most common learning algorithms that are used in
music classification and learning tasks.

Decision trees Quinlan [1986] are probably the most popular class of classification models in
machine learning, and they are widely used also in Music Information Retrieval. In West and Cox
[2004], for instance, decision tree learning algorithms have been used to build a model of the
distribution of frame values.

Because of its known merits, k-NN classification is widely used. Sometimes, the feature
values – possibly after feature selection – of each piece are regarded as a vector, and the distance
used for k-NN classifier is the euclidean distance between individual pieces (e.g. Costa et al.
[2004], Gouyon et al. [2004]) or to representative reference vectors (e.g. Hellmuth et al. [2004],
Kastner et al. [2004]).

Support Vector Machines (SVMs) are also applied to music classification: e.g. Xu et al.
[2003] use them for genre classification, and Li and Ogihara [2003] train several SVMs to recognise
mood labels, where each SVM decides if one specific label is present in the music.

Gaussian Mixture Models (GMMs) are useful for estimating the distribution of feature
values. They can be used as a classifier by modeling each class as a GMM; an instance is then
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classified by calculating, for each class (GMM), the likelihood that the instance was produced by
the respective GMM, and predicting the class with the maximum likelihood. In Liu et al. [2003],
mood detection in classical music is done based on this approach. GMM classifiers have also
been used in Burred and Lerch [2003], Tzanetakis and Cook [2002] for genre classification.

Neural Networks have also been applied to music classification: Costa et al. [2004] use a
multilayer perceptron to determine the class of a piece given its feature vector. Hellmuth et al.
[2004] use a more elaborate approach by training a separate neural network for each class, and
an additional one that combines the outputs of these networks.

3.3.3 Genre Classification:

Typical Experimental Results

The experimental results found in the literature on genre classification are not easy to compare,
as researchers use many different music collections to evaluate their methods. Also, the ways
of annotating the collections vary: some researchers label the pieces according to their own
judgment, while others use online databases for the assignment of genre labels. Additionally,
different authors often tackle slightly different problems (such as categorical vs. probabilistic
classification), which makes a comparison of the results even more difficult. These facts should
be kept in mind when assessing the examples given in this section.

Generally, when trying to separate the classes Pop and Classical, very high accuracies are
reached, suggesting that this task is not too difficult. E.g., Costa et al. [2004] achieve up to 90.3%
classification accuracy, and Mierswa and Morik [2005] report even 100% on 200 pieces. In both
cases, the baseline is one half. Although Xu et al. [2003] report a classification accuracy of 93% for
four genres, in general the classification accuracy decreases when the number of genres grows.

For classification into dance music genres, Gouyon et al. [2004] obtain up to 78,9% accuracy
(15.9% baseline) when classifying 698 pieces of music into eight classes. This classification is based
on a number of rhythmic descriptors and a rule-based classifier whose rules were designed
manually. For a wider range of musical contents, divided into eleven genres, Uhle and Dittmar
[2004] report a classification accuracy of 67.6%, also based on rhythm features.

At the ISMIR 2004 conference, a comparison of different audio description algorithms was
conducted in the form of a contest1. For the section of genre classification, the winning algorithm

1http://ismir2004.ismir.net/ISMIR Contest.html
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achieved a classification accuracy of 84.07% correct answers. The test collection consisted of 729
pieces, divided into six classes, with a baseline of 43.9%.

3.3.4 Trying to Predict Labels Other Than Genre

Genre or style is a descriptor that is useful for many applications, especially in commercial
settings. Even though the concept of ‘genre’ is not well defined (see, e.g., Aucouturier and Pachet
[2003]), it is still much more ‘objective’ than the kinds of personal characterisations human
listeners attach to their music. But it is precisely these personal, subjective categorisations
(“happy music”, “aggressive music”, “music I like whan I am sad”, “music that one can dance
to”) that, if learnable by computers, would open new possibilities for intelligent and rewarding
musical interactions between humans and machines.

A small preliminary experiment on the learnability of subjective, non-genre categorisations
is reported in this section. As will be seen, the results are rather poor, and a lot of improvement
is still needed. Web-based learning about music is a promising alternative that might help
overcome the current limitations; that is the topic of the next section (Section 3.4).

The experiment presented here aimed to investigate the learnability of the categorisations
mood (happy / neutral / sad), perceived tempo (very slow / slow / medium / fast / very fast /
varying), complexity (low /medium / high), emotion (soft / neutral / aggressive), focus (vocal / both
/ instruments), and genre (blues / classical / electronica / folk / jazz / new age / noise / rock /world).
To this end, each piece in a music collection of 729 pieces was labeled with the according value.

This data basis was used to examine the discriminative power of several descriptor sets in
combination with a number of machine learning algorithms. The descriptor sets consisted mainly
of descriptors that are widely used for music classification tasks (see section 3.2.1 above). Three
different descriptor sets were tested: The set that was also used in Tzanetakis and Cook [2002],
a set made from some Mpeg7 Low Level Descriptors, and a set that contained all descriptors of
the above sets, together with some additional ones for rhythm and melody description.

To train the machine learning algorithms, mean and variance of the descriptors’ values
for a 30-second excerpt of the piece of music were taken as attributes. Table 3.1 shows the
highest classification accuracies that were achieved with different learning algorithms; accuracy
was estimated via stratified tenfold cross validation. The evaluated learning algorithms were
J48 (a decision tree learner, available — like all the other learning algorithms mentioned here
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— in the machine learning toolkit WEKA2), SMO (a support vector machine), Naive Bayes,
Naive Bayes with Kernel estimation, Boosting, Boosting with J48, Regression with MP5, Linear
Regression, and k-NN with k = 1, 3, 5, 10. The table also lists the results obtained when applying
the algorithm from Aucouturier and Pachet [2004] with to the same categorisations. For this
algorithm, the best values obtained for k-NN classification with k = 1, 3, 5, 10 are shown. The
other learning algorithms were not applicable to its feature data. Also, the baseline is given (i.e.
the classification accuracy achieved when always guessing the most frequent class).

mood perceived tempo complexity emotion focus
Baseline 50.00 % 42.53 % 75.66 % 44.46 % 68.92 %
Set from Tzanetakis and Cook [2002] 50.00 % 42.53 % 76.63 % 45.06 % 71.08 %
Some Mpeg7 LLDs 50.00 % 43.13 % 76.14 % 46.75 % 70.00 %
“Large” Set 51.08 % 44.70 % 76.87 % 47.47 % 71.20 %
Best from Aucouturier and Pachet [2004] 50.24 % 48.67 % 78.55 % 57.95 % 75.18 %

Table 3.1: Best classification accuracies for the different categorisations in the small preliminary
experiment.

These results show that with the examined techniques, in some cases it is even not possible
to get classification accuracies higher than the baseline. For all categorisations except mood,
the algorithm from Aucouturier and Pachet [2004] performed better than the other approaches.
There is a number of ways in which this experiment could be improved, e.g., by the application of
feature selection algorithms or the development of dedicated descriptors for each different task.
Still, the results point to some fundamental limitations of the feature-based learning approach;
concepts like the emotional quality of a piece of music seem to elude a purely audio-based
approach.

3.4 A New Direction: Inferring High-level Descriptors from

Extra-Musical Information

Listening to and ‘making sense of’ music is much more than decoding and parsing an incoming
stream of sound waves into higher-level objects such as onsets, notes, melodies, harmonies, etc.

2Software freely available from http://www.cs.waikato.ac.nz/ml/
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Music is embedded in a rich web of cultural, historical, cultural, and social (and marketing)
contexts that influence how music is heard, interpreted, and categorised. That is, many qualities
or categorisations attributed to a piece of music by listeners cannot solely be explained by the
content of the audio signal itself.

Also, recent research on genre classification is showing clearly that purely audio-based
approaches to music classification may be hitting a kind of ‘glass ceiling’ Aucouturier and Pachet
[2004]: there seem to be strict limits to the level of classification accuracy that can be obtained
with purely audio-based features, no matter how sophisticated the audio descriptors. From a
pragmatic point of view, then, it is clear that, if at all, high-quality automatic music annotation
and classification can only be achieved by also taking into account and exploiting information
sources that are external to the music itself.

The Internet is a rich, albeit unstructured, source of potential information, where millions
of music lovers and experts discuss, describe, and exchange music. Possible information sources
include personal web pages, music and concert reviews published on the Web, newspaper articles,
discussion forums, chat rooms, playlists exchanged through peer-to-peer networks, and many
more. A common term for denoting all the musically relevant information that is potentially
“out there” is ‘community metadata’ Whitman and Lawrence [2002]. Recent approaches to high-
level music characterisation try to automatically extract relevant descriptors from the Internet —
mostly from general, unstructured web pages —, via the use of information retrieval, text mining,
and information extraction techniques (e.g., Baumann and Hummel [2003], Whitman and Ellis
[2004], Whitman and Lawrence [2002], Whitman and Smaragdis [2002]). In a sense, this is like
learning about music without ever listening to it, by analysing the way people talk about and
describe music, rather than what the music actually sounds like.

In the following, two research projects are briefly presented that show in a prototypical
way how the Internet can be exploited as a source of information about – in this case – music
artists. Section 3.4.1 shows how artists can be probabilistically related to genres via web mining,
and section 3.4.2 presents an approach to the hierarchical clustering of music artists, and the
automatic labeling of the individual clusters with descriptive terms gleaned from the Web.

3.4.1 Assigning Artists to Genres via Web Mining

In this section we will explain how to extract features (words) related to artists from web pages
and how to use these features to construct a probabilistic genre classifier. This permits the
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computer to classify new artists present on the web using the Internet community’s ‘collective
knowledge’. To learn the concept of a genre the method requires a set of typical artists for each
genre in advance. Based on these artists and a set of web pages that talk about these artists, a
characteristic profile is created for each genre. Using this profile (i.e. a weighted list of typical
keywords) any artist can be classified by simple evaluation of word occurrences on related web
pages. The following is a simplified account of the basic method; the details can be found in
Knees et al. [2004].

To obtain useful data for genre profile generation, Internet search engines like Google are
queried with artist names, along with some constraints (e.g., +music +review) that should filter
out non-musical pages, and the top ranked pages are retrieved. (Without these constraints, a
search for groups such as Kiss would result in many unrelated pages). The retrieved pages tend
to be common web pages such as fan pages, reviews from online music magazines, or music
retailers. The first N available top-ranked webpages for each query are retrieved, all HTML
markup tags are removed, so that only the plain text content is left, and common English stop
word lists are used to remove frequent terms (e.g. a, and, or, the).

The features by which artists are characterised are the individual words that occur in any
of the pages. In order to identify those words that may indicate what genre an artist belongs
to, the next important step is feature weighting. A common method for this comes from the
field of Information Retrieval and is known as term frequency × inverse document frequency
(tf × id f ) Salton and Buckley [1988]. For each artist a and each term t appearing in the retrieved
pages, we count the number of occurrences tfta (term frequency) of term t in documents related to
a, and d ft, the number of pages the term occurred in (document frequency). These are combined
by multiplying the term frequency with the inverse document frequency. Basically, the intention
of the tf × id f function is to assign a high score to terms that occur frequently, but also to reduce
the score if these terms occur on many different pages and thus do not contain useful information.

In the approach described in Knees et al. [2004], an additional step is performed to find
those terms that are most discriminative for each genre: a χ2 test is used to select those terms
that are least independent of (i.e., are likely to be predictive of) the classes. Selecting the top
N terms for each category and scaling all χ2 values per category such that the score for the top
ranked term equals 1.0, gives a list of terms that seem to be typical of a given genre. An example
of such a list for the genre heavy metal/hard rock is shown in Table 3.2. Note that neither of the
constraint words (music and review) are included (they occur in all the pages, but they do not
help in discriminating the genres).
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The top 4 words are all (part of) artist names which were queried. However, many
artists which are not part of the queries are also in the list, such as Phil Anselmo (Pantera),
Hetfield, Hammett, Trujillo (Metallica), and Ozzy Osbourne. Furthermore, related groups such
as Slayer, Megadeth, Iron Maiden, and Judas Priest are found as well as album names (Hysteria,
Pyromania, ...) and song names (Paranoid, Unforgiven, Snowblind, St. Anger, ...) and other
descriptive words such as evil, loud, hard, aggression, and heavy metal.

To classify previously unseen artists we simply query Google with the artist name, count
the occurrences of the characteristic genre terms on the retrieved web pages, and multiply these
numbers with their respective scores for each genre. The scores in each genre are summed up,
and the probability of membership of an artist to a genre is then computed as the fraction of the
achieved score of each genre over the sum of scores over all genres.

In Knees et al. [2004], this procedure was tested using a genre taxonomy of 14 genres,
and it was shown that correct genre recognition rates of 80% and better are achievable with this
purely web-based approach, which compares very favourably with audio-based classification
(see section 3.3.3 above).

On top of this classification system, an interactive demo applet (the “GenreCrawler”) was
implemented that permits the user to experiment with the system by typing in arbitrary new
artists. In fact, the words to be typed in need not be artist names at all — they could be anything.
The learned classifier can relate arbitrary words to genres, if that makes sense at all. For example,
a query for “Pathétique” results in an unambiguous answer: Classical Music. A screenshot of the
GenreCrawler at work can be seen in Figure 3.1.

3.4.2 Learning Textual Characterisations

It is easy to convert the linguistic features (words) identified with the above method into a
similarity measure, again using standard methods from information retrieval. Similarity measures
have a wide range of applications, and one is presented in this section: learning to group music
artists into meaningful categories, and describing these categories with characteristic words.
Again, this is exploiting the Internet as an information source and could not be achieved on an
audio basis alone.

More precisely, the goal is to find words to describe what a group of artists has in common,
or what distinguishes it from other groups. Such information can be used for hierarchical user
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1.00 *sabbath 0.26 heavy 0.17 riff 0.12 butler
0.97 *pantera 0.26 ulrich 0.17 leaf 0.12 blackened
0.89 *metallica 0.26 vulgar 0.17 superjoint 0.12 bringin
0.72 *leppard 0.25 megadeth 0.17 maiden 0.12 purple
0.58 metal 0.25 pigs 0.17 armageddon 0.12 foolin
0.56 hetfield 0.24 halford 0.17 gillan 0.12 headless
0.55 hysteria 0.24 dio 0.17 ozzfest 0.12 intensity
0.53 ozzy 0.23 reinventing 0.17 leps 0.12 mob
0.52 iommi 0.23 lange 0.16 slayer 0.12 excitable
0.42 puppets 0.23 newsted 0.15 purify 0.12 ward
0.40 dimebag 0.21 leppards 0.15 judas 0.11 zeppelin
0.40 anselmo 0.21 adrenalize 0.15 hell 0.11 sandman
0.40 pyromania 0.21 mutt 0.15 fairies 0.11 demolition
0.40 paranoid 0.20 kirk 0.15 bands 0.11 sanitarium
0.39 osbourne 0.20 riffs 0.15 iron 0.11 *black
0.37 *def 0.20 s&m 0.14 band 0.11 appice
0.34 euphoria 0.20 trendkill 0.14 reload 0.11 jovi
0.32 geezer 0.20 snowblind 0.14 bassist 0.11 anger
0.29 vinnie 0.19 cowboys 0.14 slang 0.11 rocked
0.28 collen 0.18 darrell 0.13 wizard 0.10 drummer
0.28 hammett 0.18 screams 0.13 vivian 0.10 bass
0.27 bloody 0.18 bites 0.13 elektra 0.09 rocket
0.27 thrash 0.18 unforgiven 0.13 shreds 0.09 evil
0.27 phil 0.18 lars 0.13 aggression 0.09 loud
0.26 lep 0.17 trujillo 0.13 scar 0.09 hard

Table 3.2: The top 100 terms with highest χ2
tc values for genre “heavy metal/hard rock” defined

by 4 artists (Black Sabbath, Pantera, Metallica, Def Leppard). Words marked with * are part of
the search queries. The values are normalised so that the highest score equals 1.0.

interfaces to explore music collections an the artist level Pampalk et al. [2005]. A simple text-
based interface is shown in Figure 3.2 below.

As a first step, artists must be clustered hierarchically, and then appropriate terms (words)
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Figure 3.1: The GenreCrawler (cf. Knees et al. [2004]) trying to classify Elvis Presley.

must be selected to describe these clusters. The basis of clustering is a similarity measure,
which in our case is based on the linguistic features (characteristic words) extracted from Web
pages by the GenreCrawler. There is a multitude of methods for hierarchical clustering. In the
system described here Pampalk et al. [2005], basically, a one-dimensional self organising map
(SOM) Kohonen [2001] is used, with extensions for hierarhical structuring Miikkulainen [1990],
Koikkalainen and E.Oja [1990]. Overlaps between the clusters are permitted, such that an artist
may belong to more than one cluster. To obtain a multi-level hierarchical clustering, for each
cluster found another one-dimensional SOM is trained (on all artists assigned to the cluster) until
the cluster size falls below a certain limit.

The second step is the selection of characteristic terms to describe the individual clusters.
The goal is to select those words that best summarise a group of artists. The assumption
underlying this application is that the artists are mostly unknown to the user (otherwise we
could just label the clusters with the artists’ names).

There are a number of approaches to select characteristic words Pampalk et al. [2005].
One of these was developed by Lagus and Kaski (LK) Lagus and Kaski [1999] for labeling large
document collections organised by SOMs. LK only use the term frequency tfta for each term t

and artist a. The heuristically motivated ranking formula (higher values are better) is,

ftc = (tftc/
∑

t′

tft′c) ·
(tftc/

∑

t′ tft′c)
∑

c′(tftc′/
∑

t′ t ft′c′)
, (3.1)

where tftc is the average term frequency in cluster c. The left side of the product is the importance
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Figure 3.2: Screen shot of the HTML user interface to a system that automatically infers textual
characterisations of artist clusters (cf. Pampalk et al. [2005]).

of t in c defined through the frequency of t relative to the frequency of other terms in c. The right
side is the importance of t in c relative to the importance of t in all other clusters.

To illustrate, Figure 3.2 shows a simple HTML interface that permits a user to explore the
cluster structure learned by the system. There are two main parts to it: the hierarchy of clusters
visualised as a grid of boxed texts and, just to the right of it, a display of a list of artists mapped to
the currently selected cluster. The clusters of the first level in the hierarchy are visualised using
the five boxes in the first (top) row. After the user selects a cluster, a second row appears which
displays the children of the selected cluster. The selected clusters are highlighted in a different
color. The hierarchy is displayed in such a way that the user can always see every previously
made decision on a higher level. The number of artists mapped to a cluster is visualised by a
bar next to the cluster. Inside a text box, at most the top 10 terms are displayed. The value of
the ranking function for each term is coded through the color in which the term is displayed.
The best term is always black and as the values decrease the color fades out. In the screenshot,
at the first level the second node was selected, on the second level the fifth node, and on the
third level, the first node. More details about method and experimental results can be found in
Pampalk et al. [2005].

To summarise, the last two sections were meant to illustrate how the Internet can be used
as a rich source of information about music. These are just simple first steps, and a lot of research
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on extracting richer music-related information from the Web can be expected.

A general problem with web-based approaches is that many new and not so well known
artists or music pieces do not appear on web pages. That limits the approach to yesterday’s main-
stream western culture. Another issue is the dynamics of web contents (e.g. Lawrence and Giles
[1999]). This has been studied in Knees et al. [2004] and the study was continued in Knees [2004].
The experiments reported there indicate that, while the web may indeed be unstable, simple ap-
proaches like the ones described here may be highly robust to such fluctuations in web contents.
Thus, the web mining approach may turn out to be an important pillar in research on music
categorisation, if not music ‘understanding’.

3.5 Research and Application Perspectives

Building computers that can ‘make sense’ of music has long been a goal topic that inspired
scientists, especially in the field of Artificial Intelligence (AI). For the past 20 or so years, research
in AI and Music has been aiming at creating systems that could in some way mimic human
music perception, or to put it in more technical terms, that could recognise musical structures
like melodies, harmonic structure, rhythm, etc. at the same level of competence as human experts.
While there has been some success in specialised problems such as beat tracking, most of the truly
complex musical capabilities are still outside of the range of computers. For example, no machine
is currently capable of correctly transcribing an audio recording of even modest complexity, or of
understanding the high-level form of music (e.g., recognising whether a classical piece is in sonata
form, identifying a motif and its variations in a Mozart sonata, or unambiguously segmenting a
popular piece into verse and chorus and bridge).

The new application field of Music Information Retrieval has led to, or at least contributed
to, a shift of expectations: from a practical point of view, the real goal is not so much for a
computer to ‘understand’ music in a human-like way, but simply to have enough ‘intelligence’
to support intelligent musical services and applications. Perfect musical understanding may not
be required here. For instance, genre classification need not reach 100% accuracy to be useful
in music recommendation systems. Likewise, a system for quick music browsing (e.g., Goto
[2003]) need not perform a perfect segmentation of the music — if it finds roughly those parts in
a recording where some of the interesting things are going on, that may be perfectly sufficient.
Also, relatively simple capabilities like classifying music recordings into broad categories (genres)
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or assigning other high-level ‘semantic’ labels to pieces can be immensely useful.

As has been indicated in this chapter, some of these capabilities are within reach, and
indeed, some highly interesting real-world applications of this technology are currently emerging
in the music market. ¿From the research point of view, it is quite clear that there is still ample
room for improvement, even within the relatively narrow domain of learning to assign high-level
descriptors and labels to music recordings, which was the topic of this chapter. For instance,
recent work on musical web mining has shown the promise of using extra-musical information
for music classification, but little research has so far been performed on integrating different
information sources — low-level audio features, higher-level structures automatically extracted
from audio, web-based features, and possibly lyrics (which can also be recovered automatically
from the Internet Knees et al. [2005]) — in non-trivial ways.

A concept of central importance to MIR is music similarity measures. These are useful not
only for classification, but for a wide variety of practical application scenarios, e.g., the auto-
matic structuring and visualisation of large digital music collections Pampalk et al. [2002, 2004],
automatic playlist generation (e.g., Aucouturier and Pachet [2002b]), automatic music recom-
mendation, and many more. Current music similarity measures are usually based on lower-level
descriptors which are somehow averaged over a whole piece, so that a Euclidean distance metric
can be applied to them. More complex approaches like clustering and distribution modelling
via mixtures give a slightly more detailed account of the contents of a piece, but still ignore
the temporal aspect of music. While preliminary experiments with Hidden Markov Models
Aucouturier and Pachet [2004], Flexer et al. [2005], which do model temporal dependencies, do
not seem to lead to improvements when based on low-level timbral features (like MFCCs), there
is no reason to assume that the integration of higher-level descriptors (like melody, harmony,
etc.) and temporal modelling will not permit substantial improvement. A lot of research on
these issues is to be expected in the near future, driven by the sheer practical potential of music
similarity measures. To put it simply: computers equipped with good music similarity measures
may not be able to make sense of music in any human-like way, but they will be able to do more
and more sensible things with music.
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This chapter gives an introduction into basic strands of current research in expres-
sive music performance. A special focus is given on the various methods to acquire
performance data either during a performance (e.g., through computer-monitored in-
struments) or from audio recordings. We then overview the different computational
approaches to formalise and model the various aspects in expressive music perfor-
mance. Future challenges and open problems are tackled briefly at the end of this
chapter.
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4.1 Introduction

Millions of people are regularly attending live music events or listening to recordings of music
performances. What drives them to do so is hard to pin down with certainty, and the reasons
for it might be manifold. But while enjoying the music, they are all listening to (mostly) human-
made music that contains a specific human expression, whatever kind it might be — what they
hear makes sense to them. Without this expressivity the music would not attract people; it is an
integral part of the music.

Given the central importance of expressivity (not only in music, but in all communication
modes and interaction contexts), it is not surprising that human expression and expressive
behaviour have become a domain of intense scientific study. In the domain of music, much
research has focused on the act of expressive music performance, as it is commonly and most
typically found in classical music: the deliberate shaping of the music by the performer, the
imposing of expressive qualities onto an otherwise ‘dead’ musical score via controlled variation
of parameters such as intensity, tempo, timing, articulation, etc. Early attempts at quantifying
this phenomenon date back to the beginning of the 20th century, and even earlier than that.

If we wish to precisely measure and analyse every detail of an expressive music perfor-
mance (onset timing, timbre and intensity, duration, etc), we end up with huge amounts of data
that quickly become unmanageable. Since the first large-scale, systematic research into expres-
sion in music performance (usually of classical music) in the 1930s, this has always been a main
problem in this field that was controlled either by reducing the amount of music investigated
to some seconds of music, or by limiting the number of performances studied to one or two.
Recent approaches try to overcome this drawback by using modern computational methods in
order to study, model, and understand this complex interaction of performed events and other
information of the performance (e.g., the score and the music structure in the case of “classical
music”).

In the past ten years, quite some very comprehensive overview papers have been pub-
lished on the various aspects of music performance research. The probably most cited is Alf
Gabrielsson’s chapter in Diana Deutsch’s book “Psychology of Music” [Gabrielsson, 1999] in
which he reviewed over 600 papers in this field published until approximately 1995. In a follow-
up paper, he added and discussed another 200 peer-reviewed contributions that appeared until
2002 [Gabrielsson, 2003]. A cognitive-psychological review has been contributed by Palmer
[1997] summarising empirical research that concentrate on cognitive aspects of music perfor-
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mance such as memory retrieval, anticipatory planning, or motor control. The musicologist’s
perspective is represented by two major edited books devoted exclusively to music performance
research [Rink, 1995, 2002]. Lately, more introductory chapters highlight the various method-
ological issues of systematic musicological performance research [Rink, 2003, Clarke, 2004, Cook,
2004, Windsor, 2004]. Two recent contributions surveyed the diversity of computational ap-
proaches in modeling expressive music performance [De Poli, 2004, Widmer and Goebl, 2004].
Parncutt and McPherson [2002] attempted to bridge the gap between the research on music per-
formance and the music practice by bringing together two authors from each of the two sides for
each chapter of this book.

Having this variety of overview papers in mind, we aim in this chapter to give a systematic
overview on the more technological side of accessing, measuring, analysing, studying, and
modeling expressive music performances. As an outset, we screened the current literature of the
past century on the various ways of obtaining expressive data of music performances. Then, we
review current computational models for expressive music performance. In a final section we
briefly sketch possible future strands and open problems that might be tackled by future research
in this field.

4.2 Data Acquisition and Preparation

This section is devoted to very practical issues of obtaining data of various kinds on expressive
performance and the basic processing therof. We can distinguish basically two different kinds of
obtaining information on music performance. The first is to monitor performances during the
production process with various measurement devices (MIDI pianos, accelerometers, movement
sensors, video systems, etc.). Specific performance parameters can be accessed directly (hammer
velocity of each played tone, bow speed, fingering, etc.). The other way is to extract all these
relevant data from the recorded audio signal. This method has the disadvantage that some
information easily to extract during performance is almost impossible to gain from the audio
domain (think for instance of the right pedal at the piano). The advantage, however, is that we
have now over a century of recorded music at our disposal that could serve as valuable sources
for various kinds of scientific investigation. In the following sub-sections, we discuss the various
approaches for monitoring and measuring music performance.
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4.2.1 Using Specially Equipped Instruments

Before computers and digital measurement devices were invented and easily available for ev-
eryone, researchers employed a vast variety of mechanical and electric measurement apparati to
capture all sorts of human or mechanical movements at musical instruments.

Historical Measurement Devices

Mechanical and Electro-Mechanical Setups Of the first to record the movement of piano keys
were Binet and Courtier [1895] who used a 6-mm caoutchouc rubber tube placed under the
keys that was connected to a cylindric graphical recorder that captured continuous air pressure
resulting from striking different keys on the piano. They investigated some basic pianistic tasks
such as playing trills, connecting tones, or passing-under of the thumb in scales with exemplary
material. In the first of the two contributions of this study, Ebhardt [1898] mounted metal springs
on a bar above the strings that closed a electrical shutter when the hammer was about to touch the
strings. The electric signal was recorded with a kymograph and timed with a 100-Hz oscillator.
He studied the timing precision of simple finger tapping and playing scales. Further tasks with
binary and ternary metrum revealed lengthening the IOI of an accentuated onset. Onset and
offset timing of church hymn performances were investigated by Sears [1902]. He equipped
a reed organ with mercury contacts that registered key depression of 10 selected keys. This
information was recorded on four tracks on the surface of a smoked kymograph drum. He
studied several temporal aspects of performances by four organ players, such as duration of the
excerpts, bars, and individual note values, accent behavior, or note overlap (articulation).

A multitude of mechanical measurement devices introduced Ortmann [1925, 1929] in
studies on physiological determinants of piano playing. To investigate the different behaviors
of the key, he mounted a tuning fork aside one piano key that scribe wave traces into smoked
paper that vary with the speed of the key. With this setup, he was one of the first to study the
response of the key on different pianistic playing techniques. For assessing finger movements,
Ortmann [1929, p. 230] used a purpose-built mechanical apparatus that comprises non-flexible
aluminum strips that are on one side connected to either the finger (proximal phalanx) or the key
surface and on the other side they write on a revolving drum. With this apparatus continuous
displacement of finger and key could be recorded and analysed. Another mechanical system was
the “Pantograph” [Ortmann, 1929, p. 164], a parallelogram lever construction to record lateral
arm movement. For other types of movement, he used active optical systems. The motion of a
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tiny light bulb attached to the wrist or the finger leaves a clear trace on a photo plate (the room
in very subdued light), when the shutter of the photo camera remains open for entire duration
of the movement.

Similar active markers mounted on head, shoulder, elbow, and wrist were used by Bern-
stein and Popova in their important 1930 study [reported by Kay et al., 2003] to study the complex
interaction and coupling of the limbs in piano playing. They used their “kymocyclographic cam-
era” to record the movements of the active markers. A rotating shutter allows the light of the
markers to impinge on the constantly moving photographic film. With this device they could
record up to 600 instances of the movement per second.

Piano Rolls as Data Source A source of expression data are piano rolls for reproducing pianos
that exist from different manufacturers (e.g., Welte-Mignon, Hupfeld, Aeolian Duo-Art, Ampico)
and of performances of a manifold of renowned pianists [Bowers, 1972, Hagmann]. They were
the first means to record and store artistic music performances before the gramophone has
been invented. Starting in the late 1920s, scientists took advantage of this source of data and
investigated various aspects of performance. Heinlein [1929a,b, 1930] used Duo-Art rolls of the
Aeolian company to study pedal use of four pianists playing Schumann’s Träumerei. Rolls of the
same company were the basis of Vernon’s 1936 study. He investigated vertical synchronisation
of the tones in a chord [see Goebl, 2001]. Hartmann [1932] used Hupfeld “Animatic Rolls” and
provided a very detailed study on tone and bar durations as well as note onset asynchronies in
two recordings of the first movement of Beethoven’s Op. 27 No. 2 (Josef Pembaur, Harold Bauer).
Since the precise recording procedures by these companies are still unknown because they
deliberately were hold back for commercial reasons, the authenticity of these rolls is sometimes
questionable [Hagmann, Gottschewski, 1996]. For example, the Welte-Mignon system were able
to simultaneously control dynamics only for keyboard halves. Hence, to emphasise the melody
note and to play the rest of the chord tones softer was only possible on such a system when the
melody tone was played at a different point in time than the others [Gottschewski, 1996, pp. 26–
42]. Although we know today that pianists anticipate melody notes [Palmer, 1996b, Repp,
1996a, Goebl, 2001], the Welte-Mignon rolls cannot be taken literally as a source for studying
note asynchronies [as done by Vernon, 1936]. The interpretation of piano rolls need to carefully
performed having in mind the conditions of their production. There are currently some private
attempts to systematically scan in piano rolls and transform them into standard symbolic format
(e.g., MIDI). However, we are not aware of any scientific project concerned with this.
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The Iowa Piano Camera During the 1930’s, Carl E. Seashore guided a research group that fo-
cused on different aspects of music performance, namely the singing voice, violin playing, and pi-
ano performance [Seashore, 1932, 1936a,b]. They developed various measurement setups for sci-
entific investigation, among those most prominently the “Iowa Piano Camera” [Henderson et al.,
1936] that captured optically onset and offset times and hammer velocity of each key and ad-
ditionally the movement of the two pedals. It was therefore a complete and comparably very
precise device that was not topped until the present days computer-controlled pianos [such as the
Disklavier or the SE, see Goebl and Bresin, 2003]. Each hammer is equipped with a shutter that
controls light exposure onto a moving film. The hammer shutter interrupts (as in later computer-
control reproducing pianos) twice the light exposure on the film: a first time from 24 to 12 mm
before the hammer touches the strings and a second time at hammer–string contact. The average
hammer speed of the last 12 mm of the hammer’s travel can be inferred from the distance on the
film between these two interrupts (today’s computer-controlled pianos take the average speed of
the final 5 mm). According to Skinner and Seashore [1936], the temporal resolution goes down to
10 ms. The hammer velocity gets quantised into 17 dynamics categories [Henderson, 1936]. With
this system, the IOWA group performed several studies with professional pianists. Henderson
[1936] had two professionals playing the middle section of Chopin’s Nocturne Op. 15 No. 3. In
this very comprehensive study, they examine temporal behavior, phrasing, accentuation, ped-
alling, and chord asynchronies. Skinner and Seashore [1936] analysed repeated performances of
pieces by Beethoven and Chopin and found high timing consistency within the pianists.

Contemporary Measurement Devices

Henry Shaffer’s Photocell Bechstein After the efforts of Seashore’s research group at Iowa,
it took over 40 years before a new initiative included modern technology to capture piano
performance. It was L. Henry Shaffer at Exeter who equipped each of the 88 tones of a Bechstein
grand piano with pairs of photocells and the two pedals to capture the essential expressive
parameters of piano performance [Shaffer, 1980, 1981, 1984, Shaffer et al., 1985, Shaffer and Todd,
1987, Shaffer, 1992]. The optical registration of the action’s movements had the advantage not to
affect the playability of the piano. The photocells were mounted into the piano action in pairs,
each capturing the moment of the hammer’s transit. One was placed to register the instant of
hammer–string contact, the other one the resting position of the hammer. The position of the two
pedals were monitored by micro switches and stored as 12-bit words on the computer. Each such
event was assigned a time stamp rounded to the nearest microsecond and stored on a computer.
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The sensor at the strings yielded the note onset time, the one at the hammer’s resting position
(when the hammer returns) the note offset time. The time difference between the two sensors is
an inverse estimate of the force at which the key was depressed. Already then, the introduced
technology was in principle identical to the commercially available computer-monitored pianos
until now (e.g., the Yamaha Disklavier series or the Bösendorfer SE). This device was used also
by other members of that laboratory [e.g., Clarke, 1982, 1985, Todd, 1985, 1989, 1992]

Studies with Synthesiser Keyboards or Digital Pianos Before computer-monitored acoustic
pianos became widely distributed and easily available, simple synthesiser keyboards or digital
pianos were used to capture expressive data from music performances. These devices provide
timing and loudness data for each performed event through the standardised digital communica-
tions protocol MIDI (Musical Instrument Digital Interface) that can be stored in files on computer
hard-disks [Huber, 1999] and used as an ideal data source for expression. However, such key-
boards do not provide a realistic performance setting for advanced pianists, because the response
of the keys is very different from an acoustic piano and the synthesised sound (especially with
extensive use of the right pedal) does not satisfy trained ears of highly-skilled (classical) pianists.

Such electronic devices were used for various general expression studies [e.g., Palmer,
1989, 1992, Repp, 1994a,b, 1995a, Desain and Honing, 1994]. Bruno Repp repeated two of his
studies that were first performed with data from a digital piano (one concerned with legato
articulation, Repp, 1995a, the other with the use of the right pedal, Repp, 1996b) later on a
computer-controlled grand piano [Repp, 1997a,d, respectively]. Interestingly, the results of both
pairs of studies were similar to each other, even though the acoustic properties of the digital
piano were considerably different from the grand piano.

The Yamaha Disklavier System Present performance studies dealing with piano performances
make generally use of commercially available computer-controlled acoustic pianos. Apart from
systems that can be built into a piano [e.g., Autoklav, Pianocorder, see Coenen and Schäfer,
1992], the most common is the Disklavier system by Yamaha. The first computer-controlled
grand pianos was available from 1989 onwards (e.g., MX100A/B, DGP); a revised version was
issued in 1992 (e.g., MX100II, DGPII, all informations derived from personal communication
with Yamaha Rellingen, Germany). The Mark II series was retailed since 1997, the Mark III series
followed approximately in 2001. Currently, the Mark IV series can be purchased that includes also
a computer with screen and several high-level functions such as an automatic accompaniment
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system. From 1998, Yamaha introduced their high-end PRO series of Disklaviers that involves
an extended MIDI format to store more than 7-bit velocity information (values from 0 to 127) and
information on key release.

There were few attempts to assess the Disklavier’s accuracy of recording and reproducing
performances. Coenen and Schäfer [1992] compared various reproducing systems (among them
a Disklavier DG2RE and a SE225) on their applicability for compositorical purposes (reproducing
compositions for mechanical instruments). Maria [1999] had a Disklavier DS6 Pro at his disposal
and tested its precision in various ways. More systematic tests on recording and reproduction
accuracy were performed by Goebl and Bresin [2001, 2003] using accelerometer registration to
inspect key and hammer movements during recording and reproduction.

Yamaha delivers both upright and grand piano versions of its Disklavier system. One
of the first to investigate an early upright Disklavier (MX100A) was Bolzinger [1995] who
found a logarithmic relationship between MIDI velocity values and sound pressure level (dB).
This upright model was used for several performance studies [Palmer and van de Sande, 1993,
Palmer and Holleran, 1994, Repp, 1995b,c, 1996a,c,d, 1997b,c].

The Yamaha Disklavier grand piano was even more widely used in performance research.
Moore [1992] combined data from a Disklavier grand piano with electromyographic recordings
of the muscular activity of four performers playing trills. Behne and Wetekam [1994] recorded
student performances of the theme of Mozart’s K.331 on a Disklavier grand piano and stud-
ied systematic timing variations of the Siciliano rhythm. As mentioned above, Repp repeated
his work on legato and pedalling on a Disklavier grand piano Repp [1997a,d, respectively].
Juslin and Madison [1999] used a Disklavier grand piano to record and play back different (ma-
nipulated) performances of two melodies to assess listeners’ ability to recognise simple emotional
categories. Bresin and Battel [2000] analysed multiple performances recorded on a Disklavier
grand piano of Mozart’s K.545 in terms of articulation strategies. Clarke and Windsor [2000]
used recordings made on a Disklavier grand piano for perceptual evaluation of real and artifi-
cially created performances. A short piece by Beethoven was recorded on a Disklavier grand
piano played by either one professional pianist [Windsor et al., 2001] or by 16 professional pi-
anists [Timmers et al., 2002, Timmers, 2002] in different tempi. Timing characteristics of the
different types of grace notes were investigated. Riley-Butler [2002] used a Disklavier grand
piano in educational settings. She showed piano roll representations of student’s performances
to them and observed considerable increase of learning effectivity with this method.
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Bösendorfer’s SE System The SE (“Stahnke Electronics”) System dates back to the early 1980s
when the engineer Wayne Stahnke developed a reproducing system in cooperation with the MIT
Artificial Intelligence Laboratory built into a Bösendorfer Imperial grand piano [Roads, 1986,
Moog and Rhea, 1990]. A first prototype was ready in 1985; the system had been officially sold
by Kimball (at that time owner of Bösendorfer) starting from summer 1986. This system was
very expensive and only few academic institution could afford it. Until the end of its production,
only about three dozen of these systems have been built and sold. The SE works in principle like
the Disklavier system (optical sensors register hammershank speed and key release and linear
motors reproduce final hammer velocity, see for details Goebl and Bresin, 2003). However, its
recording and reproducing capabilities are superior even compared with other much younger
systems [Goebl and Bresin, 2003]. Despite its rare occurrence in academic institutions, it was
used for performance research in some cases.

Palmer and Brown [1991] performed basic tests on the relation of hammer velocity and
peak amplitude of the outcoming sound. Repp [1993] tried to estimate peak sound level of piano
tones from the two lowest partials as measured in the spectrogram and compared a digital piano,
a Disklavier MX100A upright piano with the Bösendorfer SE. Studies in music performance
were accomplished at Ohio State University [Palmer and van de Sande, 1995, Palmer, 1996b,a],
at Musichochschule Karlsruhe [e.g., Mazzola and Beran, 1998, Mazzola, 2002, p. 833], or at the
grand piano located at the Bösendorfer company in Vienna [Goebl, 2001, Widmer, 2001, 2002b,
2003, Goebl and Bresin, 2003, Widmer, 2005].

Currently (June 2005), the Bösendorfer company in Vienna is developing a new computer-
controlled reproducing piano called “CEUS” (personal communication with Bösendorfer Vienna)
that introduces among other features sensors that register the continuous motion of each key.
This data might be extremely valuable for performance studies into the pianists’ touch and tone
control.

4.2.2 Measuring Audio By Hand

In contrast to measuring music expression during performance through any kind of sensors
placed in or around the performer or the instrument (see previous section), the other approach
is to analyse the recorded sound of music performances. It has the essential advantage that any
type of recording may serve as a basis for investigation, e.g., commercially available CDs, historic
recordings, or recordings from ethnomusicological research. One has simply to go into a record
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store and buy all the famous performances by the great pianists of the past century.1

However, to extract discrete performance information from audio is difficult and some-
times impossible. The straight-forward method is to inspect the wave form of the audio signal
with computer software and mark manually with a cursor the onset times of selected musical
events. Though this method is time consuming, it delivers timing information with a reasonable
precision. To extract data on dynamics is a bit more complicated (e.g., by reading peak energy
values from the root-mean-square of the signal averaged over a certain time window), but only
possible for overall dynamics. We are not aware of a successful procedure to extract individual
dynamics of simultaneous tones [for an attempt, see Repp, 1993]. Many other signal processing
problems have not been solved as well (e.g., extracting pedal information, tone length, etc., see
also McAdams et al., 2004).

First studies that extracted timing information directly from sound used oscillogram film-
ing (e.g., Bengtsson and Gabrielsson, 1977, for more references see Gabrielsson, 1999, p. 533).
Povel [1977] analysed gramophone records of three performances of Johann Sebastian Bach’s
first prelude of WTC I. He determined the note onsets “by eye” from two differently obtained
oscillograms of the recordings (that were transferred on analog tape). He reported a temporal
precision of 1–2 ms (!). Recordings of the same piece were investigated by Cook [1987] who ob-
tained timing (and intensity) data already through a computational routine. The onset detection
was automated by a threshold procedure applied to the digitised sound signal (8 bit, 4 kHz)
and post corrected by hand. He reported a timing resolution of 10 ms. He also stored intensity
values, but did not specify in more detail what exactly was measured here.

Gabrielsson et al. [1983] analysed timing patterns of performances from 28 different mono-
phonic melodies played by 5 performers. The timing data were measured from the audio record-
ings with a precision of ±5 ms (p. 196). In a later study, Gabrielsson [1987] extracted both timing
and (overall) intensity data from the theme of Mozart’s K.331. In this study, a digital sampling
system was used that allowed a temporal precision of 1–10 ms (p. 87). The dynamics were
estimated by reading peak amplitudes of each score event (in voltages). Nakamura [1987] used
a Brüel & Kjær level recorder to register dynamics of solo performances played on a violin, oboe,
and recorder. He analysed the produced dynamics in relation to the perceived intensity of the
music.

1In analysing recordings the researcher has to be aware that almost all records are glued together from several
takes so the analysed performance might never have taken place in this particular rendition [see also Clarke, 2004,
p. 88].
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The first larger corpus of recordings was measured by Repp [1990] who fed 19 recordings
of the third movement of Beethoven’s Op. 31 No. 3 into a VAX 11/780 computer and read off the
note onsets from waveform displays. In cases of doubt, he played the sound until the onset and
moved the cursor stepwise back in time, until the following note was no longer audible [Repp,
1990, p. 625]. He measured the performances on quarter-note level2 and reported an absolute
mean error of 6.5 ms for repeated measurements (equivalent to 1% of the inter-onset intervals,
p. 626). In a further study, Repp [1992] had 28 recordings of Schumann’s “Träumerei” by 24
renowned pianists at his disposal. This time, he used a standard waveform editing program to
hand-measure the 10-kHz sampled audio files. The rest of the procedure was identical (aural
control of ambiguous onsets). He reported an average absolute measurement error of 4.3 ms
(or less than 1%). In his later troika on the “microcosm of musical expression” [Repp, 1998,
1999a,b], he applied the same measurement procedure on 115 performances of the first five bars
of Chopin’s Op. 10 No. 3 Etude collected from libraries and record stores. He used “SoundEdit16”
software to measure the onset on sixteenth note level. In addition to previous work, he extracted
overall intensity information as well [Repp, 1999a] by taking the peak sound levels (pSPL in dB)
extracted from the root-mean-square (RMS) integrated sound signal (over a rectangular window
of 30 ms).

Nettheim [2001] measured parts of recordings of four historical performances of Chopin
e-minor Nocturne Op. 72 No. 1 (Pachmann, Godowsky, Rubinstein, Horowitz). He used a time-
stretching software (“Musician’s CD Player,” par. 8) to reduce the playback speed by factor 7
(without changing the pitch of the music). He then simply took the onset times from a time
display during playback. Tone onsets of all individual tones were measured with this method.3

In repeated measurements, he reported accuracy of the order of 14 ms. In addition to note onset
timing, he assigned arbitrary intensity values to each tone ranging from 1 to 100 by ear (par. 11).
He reports about the difficulties arising from that approach.

In recent contributions on timing and synchronisation in Jazz performances, the timing
of the various instruments of Jazz ensembles were investigated. Friberg and Sundström [2002]
measured cymbal onsets from spectrogram displays with a reported precision of ±3 ms. Ashley
[2002] studied the synchronisation of the melody instruments with the double bass line. He
repeatedly measured onsets of both lines from wave form plots of the digitised signal with
usual differences between the measurements of 3-5 ms. About the same consistency (typically

2In the second part of this paper, he measured and analysed eight-note and sixteenth-note values as well.
3Obviously, the chosen excerpts were slow pieces with a comparatively low note density.
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2 ms) was achieved by Collier and Collier [2002] through a likewise measurement procedure
(“CoolEdit 96,” manual annotation of physical onsets in trumpet solos). They exemplified an
equivocal situation where the trumpet tone “emerges from the band” (p. 468). In those cases,
they aurally determined the onset. Lisboa et al. [2005] used “Pro Tools” wave editor to extract
onset timing oc Cello solo performances; Moelants [2004] made use of a speech transcription
software (“Praat”) to assess trill and ornament timing in solo string performances.

In a recent commercial enterprise, John Q. Walker and colleagues have been trying to extract
the complete performance information out of historical (audio) recordings in order to play them
back on a modern Disklavier.4 Their commercial aim is to re-sell old recordings with modern
sound quality or live performance feel. They computationally extract as much performance
information as possible and add the missing information (e.g., tone length, pedalling) to an
artificially created MIDI file. They use it to control a modern Disklavier grand piano and
compare this performance to the original recording. Then they modify the added information
in the MIDI files and play it back again and repeat this process iteratively until the Disklavier’s
reproduction sounds identical to the original recording [see also Midgette, 2005].

Another way of assessing temporal content of recordings is by repeatedly tapping along
with the music recording e.g., on a MIDI drum pad or the like and recording this information
[Cook, 1995, Bowen, 1996, Bachmann, 1999]. This is a comparably fast method to gain rough tim-
ing data on a tappable beat level. However, perceptual studies on tapping along with expressive
music showed that tappers — even after repeatedly tapping along with the same short piece of
music — still underestimate abrupt tempo changes or systematic variations [Dixon et al., 2005].

4.2.3 Computational Extraction of Expression from Audio

Several approaches exist for the extraction of expression from audio data, or equivalently, an-
notating audio data with content-based metadata. The most general approach is to attempt to
extract as much musical information as possible, using an automatic transcription system, but
such systems are not robust enough to provide the level of precision and accuracy required for
analysis of expression [Klapuri, 2004]. Nevertheless, some systems were developed with the
specific goal of expression extraction, in an attempt to relieve some of the painstaking effort of
manual annotation [e.g., Dixon, 2000]. Since the score is often available for the musical per-
formances being analysed, Scheirer [1997] recognised that much better performance could be

4http://www.zenph.com

http://www.zenph.com
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obtained by incorporating score information into the audio analysis algorithms, but the system
was never developed to be sufficiently general or robust to be used in practice. One thing that
was lacking from music analysis software was an interface for interactive editing of partially
correct automatic annotations, without which the use of the software was not significantly more
efficient than manual annotation.

The first system with such an interface was BeatRoot [Dixon, 2001a,b], an automatic beat
tracking system with a graphical user interface which visualised (and auralised) the audio and
derived beat times, allowing the user to edit the output and retrack the audio data based on
the corrections. BeatRoot produces a list of beat times, from which tempo curves and other
representations can be computed. Although it has its drawbacks, this system has been used
extensively in studies of musical expression [Goebl and Dixon, 2001, Dixon et al., 2002, Widmer,
2002a, Widmer et al., 2003, Goebl et al., 2004]. Recently, Gouyon et al. [2004] implemented a
subset of BeatRoot as a plugin for the audio editor WaveSurfer [Sjölander and Beskow, 2000].

A similar methodology was applied in the development of JTranscriber [Dixon, 2004],
which was written as a front end for an existing transcription system [Dixon, 2000]. The graphical
interface shows a spectrogram scaled to a semitone frequency scale, with the transcribed notes
superimposed over the spectrogram in piano roll notation. The automatically generated output
can be edited with simple mouse-based operations, with audio playback of the original and the
transcription, together or separately, possible at any time.

These tools provide a better approach than manual annotation, but since they have no
access to score information, they still require a significant amount of interactive correction, so
that they are not suitable for very large scale studies. An alternative approach is to use existing
knowledge, such as from previous annotations of other performances of the same piece of music
and transfer the metadata after aligning the audio files. The audio alignment system MATCH
[Dixon and Widmer, 2005] finds optimal alignments between pairs of recordings, and is then able
to transfer annotations from one recording to the corresponding times in the second. This proves
to be a much more efficient method of annotating multiple performances of the same piece, since
manual annotation needs to be performed only once. Further, audio alignment algorithms are
much more accurate than techniques for direct extraction of expressive information from audio
data, so the amount of subsequent correction for each matched file is much less.

Taking this idea one step further, the initial step of annotation can be avoided entirely if the
musical score is available in a symbolic format, by synthesising a mechanical performance from
the score and matching the audio recordings to the synthetic performance. For analysis of ex-
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pression in audio, e.g. absolute measurements of tempo, the performance data must be matched
to the score, so that the relationship between actual and nominal durations can be computed.
Several score-performance alignment systems have been developed for various classes of music
[Cano et al., 1999, Soulez et al., 2003, Turetsky and Ellis, 2003, Shalev-Shwartz et al., 2004].

Other relevant work is the on-line version of the MATCH algorithm, which can be used
for tracking live performances with high accuracy [Dixon, 2005b,a]. This system is being de-
veloped for real time visualisation of performance expression. The technical issues are similar
to those faced by score following systems, such as those used for automatic accompaniment
[Dannenberg, 1984, Orio and Déchelle, 2001, Raphael, 2004], although the goals are somewhat
different. Matching involving purely symbolic data has also been explored. Cambouropou-
los developed a system for extracting score files from expressive performances in MIDI format
[Cambouropoulos, 2000]. After manual correction, the matched MIDI and score files were used in
detailed studies of musical expression. Various other approaches to symbolic score-performance
matching are reviewed by Heijink et al. [2000b,a].

4.2.4 Extracting Expression from Performers Movements

While the previous sections dealt with the extraction of expression contained in music perfor-
mances, this section is devoted to expression as represented in all kinds of movements that
occur when performers interact with their instruments during performance [for an overview, see
Davidson and Correia, 2002, Clarke, 2004]. Performers’ movements are a powerful communica-
tion channel of expression to the audience, sometimes even overriding the acoustic information
[Behne, 1990, Davidson, 1994].

There are several ways to monitor performers’ movements. One possibility is to connect
mechanical devices to the playing apparatus of the performer [e.g., Ortmann, 1929] that has
the disadvantage to inhibit the free execution of the movements. More common are optical
tracking systems that either simply video-tape performers movements or record special passive
or active markers placed on particular joints of the performers’ body. We already mentioned an
early study by Berstein and Poppova (1930) who introduced an active photographical tracking
system [Kay et al., 2003]. These systems use light-emitting makers placed on the various limbs
and body parts of the performer. They are recorded by video cameras that are connected to
software that extracts the position of the markers [e.g., the Selspot System, as used by Dahl, 2004,
2005]. The disadvantage of those systems is that the participants need to be cabled which is a
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time-consuming process and the cables might inhibit the participants to move as they would
move normally. Passive systems use reflective markers that are illuminated by external lamps.
In order to create a three-dimensional picture of movement, the data from several cameras are
coupled by software [e.g., Palmer and Dalla Bella, 2004].

Even less intrusive are video systems that simply record performance movements without
any particular marking of the performer’s limbs. Elaborated software systems are able to track
defined body joints directly from the plain video signal (e.g., EyesWeb5, see Camurri et al., 2004,
2005 or Camurri and Volpe, 2004 for an overview in gesture-related research). Perception studies
on communication of expression through performers gestures use simpler point-light video
recordings (reflective markers on body joints recorded in a darkened room) to present them to
participants for ratings [Davidson, 1993].

4.2.5 Extraction of Emotional Content from MIDI and Audio

For listeners and musicians, an important aspect of music is its ability to express emotions
[Juslin and Laukka, 2004]. An important research question has been to investigate the coupling
between emotional expression and the underlying musical parameters. Two important distinc-
tions have to be made. The first distinction is between perceived emotional expression (“what
is communicated”) and induced emotion (“what you feel”). Here, we will concentrate on the
perceived emotion which has been the focus of most of the research in the past. The second
distinction is between compositional parameters (pitch, melody, harmony, rhythm) and per-
formance parameters (tempo, phrasing, articulation, accents). The influence of compositional
parameters has been investigated during a long time starting with the important work of Hevner
[1937]. A comprehensive summary is given in Gabrielsson and Lindström [2001]. The influence
of performance parameters has recently been investigated in a number of studies [for overviews
see Juslin and Sloboda, 2001, Juslin, 2003]. These studies indicate that for basic emotions such as
happy, sad or angry, there is a simple and consistent relationship between the emotional descrip-
tion and the parameter values. For example, a sad expression is characterised by slow tempo, low
sound level, legato articulation and a happy expression is characterised by fast tempo, moderate
sound level and staccato articulation.

Predicting the emotional expression is usually done using a two-step process [see also
Lindström et al., 2005]: (1) Parameter extraction The first step extracts the basic parameters from

5http://www.megaproject.org

http://www.megaproject.org
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the incoming signal. The selection of parameters is a trade-off between what is needed in terms
of emotion mapping and what is possible. MIDI performances are the simplest case in which
the basic information in terms of notes, dynamics and articulation is already available. From this
data it is possible to deduce for example the tempo using beat-tracking methods as described
above. Audio from monophonic music performances can also be analyzed on the note-level
giving similar parameters as for the MIDI case (with some errors). In addition, using audio
a few extra parameters are available such as the spectral content and the attack velocity. The
CUEX algorithm by Friberg et al. [2005], including a real-time version [Friberg et al., 2002], was
specifically designed for prediction of emotional expression yielding eight different parameters
for each recognised note. Polyphonic audio is the most difficult case which has only recently been
considered. Due to the analysis difficulty several approaches can be envisioned. One possibility is
to first make a note extraction using the recent advances in polyphonic transcription mentioned
above [e.g., Klapuri, 2004] and then extract the parameters. Due to the lack of precision of
polyphonic transcription there will be many errors. However, this may not be too important for
the prediction of the emotion in the second step below since preferably the mapping is redundant
and insensitive to small errors in the parameters. A more straight-forward approach is to extract
overall parameters directly from audio, such as using auditory-based measures for pitch, rhythm
and timbre [Leman et al., 2004, Liu et al., 2003]. (2) Mapping The second step is the mapping from
the extracted parameters to the emotion character. The selection of method is dependent on the
use (research or real time control) and the desired behaviour of the output data. A typical data-
driven method is to use listener ratings (the “right” answer) for a set of performances to train a
model. Common statistical/mathematical models are used such as regression [Leman et al., 2004,
Juslin, 2000], bayesian networks [Canazza et al., 2003], or hidden markov models [Dillon, 2003].
An alternative approach more suitable for real time control is to directly implement qualitative
data from previous studies using a fuzzy logic model [Seif El-Nasr et al., 2000, Friberg, 2005], see
also Section ??.

4.3 Computational Models of Music Performance

Models describe relations among different kinds of observable (and often measurable) informa-
tion about a phenomenon, discarding details that are felt to be irrelevant. They serve to generalise
the findings and have both a descriptive and predictive value. Often the information is quantita-
tive and we can distinguish input data, supposedly known, and output data, which are inferred
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by the model. In this case, inputs can be considered as the causes and output the effect of the
phenomenon. When a model can be implemented on a computer, it is called computational
model and it allows deducing the values of output data corresponding to the provided values
of inputs. This process is called simulation and it is widely used to predict the behaviour of the
phenomenon in different circumstances and can be used to validate the model, by comparing the
predicted results with actual observations.

In music performance modelling, the information that can be considered is not only quan-
titative, as physical information, e.g. timing or performer’s movements. We have also symbolic

information that refers more to a cognitive organization of the music than to an exact physical
value and expressive information more related to the affective and emotional content of the music.
Recently computer science and engineering started paying attention to expressive information
and developing suitable theories and processing tools giving rise to the field of affective comput-
ing and Kansei information processing. Music and music performance in particular, attracted the
interest of researchers for developing and testing such tools. Music indeed is the more abstract
of the arts and has a long tradition of formalization. Moreover it combines in an interesting way
all these aspects.

4.3.1 Modeling Strategies

We may distinguish some strategies in developing the structure of the model and in finding its
parameters. The most prevalent ones are analysis-by-measurement and analysis-by-synthesis.
Recently some methods from artificial intelligence started being developed: machine learning
and case based reasoning. We may distinguish local models, that acts at note level and try to
explain the observed facts in a local context, and global models that take into account the higher
level of the musical structure or more abstract expression pattern. The two approaches often
require different modelling strategies and structures. In certain cases, it is possible to devise a
combination of both approaches with the purpose being to obtain better results. The composed
models are built by several components, each one aiming to represent the different sources of
expression. However, a good combination of the different parts is still quite challenging.
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Analysis By Measurements

The first strategy, analysis-by-measurements, is based on the analysis of deviations from the
musical notation measured in recorded human performances. The analysis aims to recognise
regularities in the deviation patterns and to describe them by means of a mathematical model,
relating score to expressive values (see Gabrielsson 1999 and Gabrielsson 2003 for an overview
of the main results). The method starts by selecting the performances to be analyzed. Often
rather small set of carefully selected performances are used. Then the physical properties of
every note are measured using the methods seen in section 4.2 and the data so obtained are
checked for reliability and consistency. The most relevant variables are selected and analyzed
by statistical methods. The analysis assumes an interpretation model that can be confirmed or
modified by the results of the measurements. Often the hypothesis that deviations deriving from
different patterns or hierarchical levels can be separated and then added is implicitly assumed.
This hypothesis helps the modelling phase, but may be oversimplified. Several methodologies of
approximation of human performances were proposed using neural network techniques or fuzzy
logic approach or using a multiple regression analysis algorithm or linear vector space theory.
In these cases, the researcher devises a parametric model and then estimates its parameters that
best approximate a set of given performances.

Many models address very specific aspects of expressive performance, for example,
the final ritard and its relation to human motion [Kronman and Sundberg, 1987, Todd, 1995,
Friberg and Sundberg, 1999, Sundberg, 2000, Friberg et al., 2000b, ?]; the timing of grace notes
[Timmers et al., 2002]; vibrato [Desain and Honing, 1996, Schoonderwaldt and Friberg, 2001];
melody lead [Goebl, 2001, 2003]; legato [Bresin and Battel, 2000]; or staccato and its relation to
local musical context [Bresin and Widmer, 2000, Bresin, 2001].

A global approach was pursued by Todd in his phrasing model [Todd, 1992, 1995]. This
model assumes that the structure of a musical piece can be decomposed in a hierarchical sequence
of segments, where each segment is on its turn decomposed in a sequence of segments. The
performer emphasises the hierarchical structure by an accelerando-ritardando pattern and by a
crescendo-decrescendo pattern for each segment. These patterns are superimposed (summed)
onto each other and describe from the global variation over the whole to local fluctuations at the
note level.
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Analysis By Synthesis

While analysis by measurement develop models that best fit quantitative data, the analysis-by-
synthesis paradigm takes into account the human perception and subjective factors. First, the
analysis of real performances and the intuition of expert musicians suggest hypotheses that are
formalised as rules. The rules are tested by producing synthetic performances of many pieces
and then evaluated by listeners. As a result the hypotheses are refined, accepted or rejected.
This method avoids the difficult problem of objective comparison of performances, including
subjective and perceptual elements in the development loop. On the other hand, this method
depends too much on the personal competences and taste of few experts.

The most important one is the KTH rule system [Friberg, 1991, 1995, Friberg et al., 1998,
2000a, Sundberg et al., 1983, 1989, 1991]. In the KTH system, the rules describe quantitatively the
deviations to be applied to a musical score, in order to produce a more attractive and human-like
performance than the mechanical one that results from a literal playing of the score. Every rule
tries to predict (and to explain with musical or psychoacoustic principles) some deviations that
a human performer is likely to insert. Many rules are based on low-level structural analysis of
the text. The KTH rules can be grouped according to the purposes that they apparently have
in music communication. Differentiation rules appear to facilitate categorization of pitch and
duration, whereas grouping rules appear to facilitate grouping of notes, both at micro and macro
level.

Machine Learning

In the traditional way of developing models, the researcher normally makes some hypothesis on
the performance aspects s/he want to model and then s/he tries to establish the empirical validity
of the model by testing it on real data or on synthetic performances. A different approach,
pursued by Widmer and coworkers [Widmer, 1995a,b, 1996, 2000, 2002b, Widmer and Tobudic,
2003, Widmer, 2003, Widmer et al., 2003, Widmer, 2005, Tobudic and Widmer, 2005], instead
tries to extract new and potentially interesting regularities and performance principles from
many performance examples, by using machine learning and data mining algorithms. The aim
of these methods is to search for and discover complex dependencies on very large data sets,
without any preliminary hypothesis. The advantage is the possibility of discover new (and
possibly interesting) knowledge, avoiding any musical expectation or assumption. Moreover,
these algorithms normally allow describing discoveries in intelligible terms. The main criteria
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for acceptance of the results are generality, accuracy, and simplicity.

Models were developed to predict local, note-level expressive deviations and higher-level
phrasing patterns. Moreover, these two types of models can be combined to yield an integrated,
multi-level model of expressive timing and dynamics.

Case-Based Reasoning

An alternative approach, much closer to the observation-imitation-experimentation process ob-
served in humans, is that of directly using the knowledge implicit in human performances
samples. Case-based reasoning (CBR) is based on the idea of solving new problems by us-
ing (often with some kind of adaptation) similar previously solved problems. An example in
this direction is the SaxEx system for expressive performance of Jazz ballads [Arcos et al., 1998,
López de Mántaras and Arcos, 2002] which predicts expressive transformations to saxophone
phrases recordings by looking at how other, similar phrases were played by a human musi-
cian. The success of this approach greatly depends on the availability of a large amount of
well-distributed previously solved problems, that are not easy to collect.

Mathematical Theory Approach

A rather different model based mainly on mathematical considerations is the Mazzola model
[Mazzola, 1990, Mazzola and Zahorka, 1994, Mazzola et al., 1995, Mazzola, 2002, Mazzola and Göller,
2002]. This model basically consists of an analysis part and a performance part. The analysis part
involves computer-aided analysis tools, for various aspects of the music structure, that assign
particular weights to each note in a symbolic score. The performance part, that transforms struc-
tural features into an artificial performance, is theoretically anchored in the so-called Stemma
Theory and Operator Theory (a sort of additive rule-based structure-to-performance mapping).
It iteratively modifies the performance vector fields, each of which controls a single expressive
parameter of a synthesised performance.
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4.3.2 Perspectives

Comparing Performances

A problem that normally arises in performance research is how performances can be compared. In
subjective comparison often a supposed ideal performance is taken as reference by the evaluator.
In other cases, an actual reference performance can be assumed. Of course subjects with different
background can have dissimilar preferences that are not easily made explicit.

However when we consider computational models, objective numerical comparisons
would be very appealing. In this case, performances are represented by a set of values. Some-
times the adopted strategies compare absolute or relative values. As measure of distance the
mean of the absolute differences can be considered, or the Euclidean distance (square root of
difference squares) or maximum distance (i.e., take the maximal difference component). It is not
clear how to weight the components, nor which distance formulation is more effective. Different
researchers employ different measures.

More basically it is not clear how to combine time and loudness distances for a compre-
hensive performance comparison. For instance as already discussed, the emphasis of a note can
be obtained by lengthening, dynamic accent, time shift, timbre variation. Moreover, it is not
clear how perception can be taken into account, nor how to model subjective preferences. How
are subjective and objective comparisons related? The availability of good and agreed methods
for performance comparison would be very welcome in performance research. A subjective
assessment of objective comparison is needed. More research effort on this direction is advisable.

Modeling Different Expressive Intentions

The models discussed in the previous sections aim at explaining and simulating performances
which is played accordingly to appropriate rules imposed by a specific musical praxis. The
focus is on aspects that most performances have in common. Recently research started paying
attention to aspects that differentiate performances and performers styles [Repp, 1992, Widmer,
2003]. The same piece of music can be performed trying to convey different expressive intentions
[Gabrielsson and Lindström, 2001], changing the style of the performance. The CARO model
[Canazza et al., 2004] is able to modify a neutral performance (i.e. played without any specific
expressive intention) in order to convey different expressive intentions. Bresin and Friberg [2000]
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developed some macro rules for selecting appropriate values for the parameters of the KTH rule
system in order to convey different emotions.

Expression Recognition Models

The methods seen in the previous sections aim at explaining how expression is conveyed by
the performer and how it is related to the musical structure. Recently these accumulated re-
search results started giving rise to models that aim to extract and recognise expression from a
performance [Dannenberg et al., 1997, Friberg et al., 2002, Mion and De Poli, 2004].

4.4 Open Problems and Future Paths

Although computational modelling of expressive human performance has been developing
quickly during the past decade, there is ample room for further research, and the field of compu-
tational performance modelling continues to be active. However, the idea of a creative activity
being predictable and, more specifically, the notion of a direct “quasi-causal” relation between the
musical score and the performance is quite problematic. The person and personality of the artist
as a mediator between music and listener is totally neglected in basically all models discussed
above. There are some severe general limits to what any predictive model can describe. For
instance, very often performers intentionally play the repetition of the same phrase or section
totally differently the second time around. Being able to predict this would presuppose models of
aspects that are outside the music itself, such as performance context, artistic intentions, personal
experiences, listeners’ expectations, etc.

Although it might sound quaint, there are concrete attempts to elaborate computational
models of expressive performance to a complexity so that they are able to compete with human
performers. Since 2002, a scientific initiative brings together scientists from all over the world for
a competition of artificially created performances (RENCON, contest for performance rendering
systems, the next one to be held at the ICMC’05 in Barcelona6). Their aim is to construct
computational systems that are able to pass ax expressive performance Turing Test [that is an
artificial performance sounds indistinguishable to a human performance, Hiraga et al., 2004].
One ambitious goal is a computer system to win the Chopin competition in 2050 [Hiraga et al.,

6http://www.icmc2005.org

http://www.icmc2005.org
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2004].

It is very hard to imagine that this will ever be possible, not only because the organisers
of such a competition wont accept a computer to participate, but also because a computational
model would have to take into account the complex social and cognitive contexts in which, like
any human intellectual and artistic activity, a music performance is situated. But even if complete
predictive models of such phenomena are strictly impossible, they advance our understanding
and appreciation of the complexity of artistic behaviour, and it remains an intellectual and
scientific challenge to probe the limits of formal modelling and rational characterisation.
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K. Sjölander and J. Beskow. WaveSurfer – an open source speech tool. In Proceedings of the

International Conference on Spoken Language Processing, 2000.

Laila Skinner and Carl Emil Seashore. A musical pattern score of the first movement of the
Beethoven Sonata, Opus 27, No. 2. In Carl Emil Seashore, editor, Objective Analysis of Musical

Performance, volume IV of Studies in the Psychology of Music, pages 263–279. University Press,
Iowa City, 1936.

F. Soulez, X. Rodet, and D. Schwarz. Improving polyphonic and poly-instrumental music to
score alignment. In 4th International Conference on Music Information Retrieval, pages 143–148,
2003.

Johan Sundberg. Four years of research on music and motion. Journal of New Music Research, 29
(3):183–185, 2000.

Johan Sundberg, Anders Askenfelt, and Lars Frydén. Musical performance. A synthesis-by-rule
approach. Computer Music Journal, 7:37–43, 1983.

Johan Sundberg, Anders Friberg, and Lars Frydén. Rules for automated performance of ensemble
music. Contemporary Music Review, 3:89–109, 1989.

Johan Sundberg, Anders Friberg, and Lars Frydén. Threshold and preference quantities of rules
for music performance. Music Perception, 9(1):71–92, 1991.

Renee Timmers. Freedom and Constraints in Timing and Ornamentation. Shaker Publishing, Maas-
tricht, 2002.



BIBLIOGRAPHY 134

Renee Timmers, Richard Ashley, Peter Desain, Henkjan Honing, and Luke W. Windsor. Timing
of ornaments in the theme of Beethoven’s Paisello Variations: Empirical data and a model.
Music Perception, 20(1):3–33, 2002.

Asmir Tobudic and Gerhard Widmer. Relational IBL in classical music. Machine Learning, to
appear, 2005.

Neil P. McAngus Todd. A model of expressive timing in tonal music. Music Perception, 3(1):33–58,
1985.

Neil P. McAngus Todd. A computational model of Rubato. Contemporary Music Review, 3:69–88,
1989.

Neil P. McAngus Todd. The dynamics of dynamics: A model of musical expression. Journal of

the Acoustical Society of America, 91(6):3540–3550, 1992.

Neil P. McAngus Todd. The kinematics of musical expression. Journal of the Acoustical Society of

America, 97(3):1940–1949, 1995.

R. Turetsky and D. Ellis. Ground-truth transcriptions of real music from force-aligned MIDI
syntheses. In 4th International Conference on Music Information Retrieval, pages 135–141, 2003.

Leroy Ninde Vernon. Synchronization of chords in artistic piano music. In Carl Emil Seashore,
editor, Objective Analysis of Musical Performance, volume IV of Studies in the Psychology of Music,
pages 306–345. University Press, Iowa City, 1936.

Gerhard Widmer. A machine learning analysis of expressive timing in pianists’ performances
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5.1 Introduction

The problem of effectively controlling sound generation and processing has always been relevant
for music research in general and Musical Informatics in particular. Moreover, an important
aspect of research on control concerns the perceptual, cognitive, affective mechanisms affecting
sound and music control from the study of the mechanisms involved in the control by musicians
of traditional acoustic instruments to the novel opportunities offered by modern Digital Music
Instruments. More recently, the problem of defining effective strategies for the real-time control
of multimodal interactive systems, with particular reference to music but not limited to it, is
receiving a growing interest from the scientific community since its relevance also for future
research and applications in broader fields of human-computer interaction.

In this framework, research on control extended its scope to include for example analysis
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of human movement and gesture (not only gestures of musicians playing an instruments but
also gestures of subjects interacting with interactive systems), analysis of the perceptual and
cognitive mechanisms of gesture interpretation, analysis of the communication of non-verbal
expressive and emotional content through gesture, multimodality and cross-modality, identifi-
cation of strategies for mapping the information obtained from gesture analysis onto real-time
control of sound and music output including high-level information (e.g., real-time control of
expressive sound and music output).

A key issue in this research is its cross-disciplinary nature. Research can highly benefit
from cross-fertilization between scientific and technical knowledge on the one side, and art and
humanities on the other side. Such need of cross-fertilization opens new perspectives to research
in both fields: if from the one hand scientific and technological research can benefit from models
and theories borrowed from psychology, social science, art, and humanities, on the other hand
these disciplines can take advantage of the tools technology can provide for their own research,
i.e., for investigating the hidden subtleties of human beings at a depth that was never reached
before. The convergence of different research communities such as musicology, computer science,
computer engineering, mathematics, psychology, neuroscience, arts and humanities as well as
of theoretical and empirical approaches bears witness of the need and the importance of such
cross-fertilization.

This work briefly surveys some relevant aspects of research on control putting into evidence
research issues, achieved results, and problems that are still open for the future.

A first aspect concerns the development of a conceptual framework envisaging control
at different levels, from the low-level analysis of audio signals, to feature extraction, to the
identification and analysis of significant musical structures (note groups, phrases), to the high-
level association of semantic descriptions including affective, emotional content. Moreover, such
conceptual framework does not have to be limited to the music domain, but it needs to be
applied to other modalities (e.g., movement and gesture) too. In particular, it has to enable
multimodal and cross-modal processing and associations, i.e., it should include such a level of
abstraction that features at that level do not belong to a given modality, rather they emerge from
modalities and can be used for mapping between modalities. The definition of such high-level
control spaces is still an open research issue deserving particular attention in the future. Chapter
5.2 presents a conceptual framework worked out in the EU-IST Project MEGA (Multisensory
Expressive Gesture Applications) that can be considered as a starting point for research on this
direction.



5.1. Introduction 138

A second aspect is related to the definition of suitable scientific methodologies for inves-
tigated the subtleties involved in sound and music control. For example, an important topic for
control research is gesture analysis of both performers and interacting subjects. Such analysis
can be performed at different layers, from the tracking of the positions of given body parts, to
the interpretation and classification of gestures in term of expressive, emotional content. Also
different perspectives are possible. Chapter 5.3 provides an overview of some consolidated sci-
entific methodologies for gesture analysis with particular focus on performing arts (dance and
music performers) and presents different perspectives for analysis of music and dance.

Moving from these foundational issues, Chapter 5.4 and Chapter 5.5 address concrete
examples of control problems. Chapter 5.4 focuses on control of music performance with a
particular emphasis on the role of the affective, emotional information. It illustrates the problems
involved with the analysis of expressive gestures of music performers and their mapping into
synthesis of emotional expression in music. Chapter 5.5 deals with control issues related with
sound production involving both control of traditional acoustic and digital musical instruments
and control of sounding objects, i.e., the problem of effectively controlling (physical) sound
models that are responsive to physical interactions and are easily matched to physical objects.
These issues are illustrated with concrete examples of applications.

A common key issue for the research discussed in these Chapters is the development of
suitable strategies for controlling and/or generating sound and music output in real-time. That
is, even if algorithms able to correctly and reliably interpret information from performers/users
including high-level expressive information from gesture were available, the problem of if and
how to use such information especially in an artistic performance still remains very open. The
problem is even more difficult to face since it often directly involves the artistic choices of the
designer of the performance, i.e., how much degrees of freedom the designer wishes to leave to
the automatic systems: in other words the role of technology in the artwork and, from a certain
point of view, the concept of artwork.

Another key issue for the design of effective control strategies able to fully process and
exploit possible high-level information is the development of multimodal and cross-modal al-
gorithms and the identification of cross-modal features. Chapter 5.6 addresses this topic also
discussing some concrete examples.

Finally some software often employed tools (e.g., the new version of the EyesWeb open
platform for multimodal processing, Director Musices for expressive music performance), are
briefly introduced along the book and some conclusions are drawn with a particular focus on the
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most promising research topics that still need to be addressed in the future.

5.2 A conceptual framework for gestural control of interactive

systems

A relevant foundational aspect for research in sound and music control concerns the development
of a conceptual framework envisaging control at different levels, from the low-level analysis of
audio signals, toward high-level semantic descriptions including affective, emotional content.

Such conceptual framework does not have to be limited to the music domain, but it needs
to be applied to other modalities (e.g., movement and gesture) too. In particular, it has to enable
multimodal and cross-modal processing and associations, i.e., it should include such a level of
abstraction that features at that level do not belong to a given modality, rather they emerge from
modalities and can be used for mapping between modalities.

This Chapter presents a conceptual framework worked out in the EU-IST Project MEGA
(Multisensory Expressive Gesture Applications, 2000-2003) that can be considered as a starting
point for research on this direction.

Research in the MEGA project moved from the assumption that the physical stimuli that
make up an artistic environment contain information about expressiveness that can, to some
extend, be extracted and communicated. With multiple modalities (music, video, computer
animation) this allows the transmission of expressiveness parameters from one domain to another
domain, for example from music to computer animation, or from dance to music. That is,
expressive parameters are an example of parameters emerging from modalities and independent
of them. In other words, expressive parameters define a cross-modal control space that is at a
higher level with respect to modalities.

A main question in MEGA research thus relates to the nature of the physical cues that carry
the expressiveness, and a second question is how to set up cross-modal interchanges (as well as
person/machine interchanges) of expressiveness. These questions necessitated the development
of a layered conceptual framework for affect processing that splits up the problem into different
sub-problems. The conceptual framework aims at clarifying the possible links between physical
properties of a particular modality, and the affective/emotive/expressive (AEE) meaning that is
typically associated with these properties. Figure 5.1 sketches the conceptual framework in terms
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of (i) a syntactical layer that stands for the analysis and synthesis of physical properties (bottom),
(ii) a semantic layer that contains descriptions of affects, emotions, and expressiveness (top), and
(iii) a layer of AEE mappings and spaces that link the syntactical layer with the semantic layer
(middle).

The syntactical layer contains different modalities, in particular audio, movement, and
animation and arrows point to flows of information. Communication of expressiveness in the
cross-modal sense could work in the following way. First, (in the upward direction) physical
properties of the musical audio are extracted and the mapping onto an AEE-space allows the
description of the affective content in the semantic layer. Starting from this description (in the
downward direction), a particular AEE-mapping may be selected that is then used to synthesize
physical properties of that affect in another modality, such as animation. This path is followed,
for example, when sadness is expressed in the music, and when an avatar is displaying this
sadness in his posture.

5.2.1 Syntactic Layer

The syntactic layer is about the extraction of the physical features that are relevant for affect,
emotion and expressiveness processing. In the domain of musical audio processing, Lesaffre and
colleagues Lesaffre et al. [2003] worked out a useful taxonomy of concepts that gives a structured
understanding of this layer in terms of a number of justified distinctions. A distinction is made
between low-level, mid-level, and high-level descriptors of musical signals. In this viewpoint, the
low-level features are related to very local temporal and spatial characteristics of sound. They
deal with the categories of frequency, duration, spectrum, intensity, and with the perceptual
categories of pitch, time, timbre, and perceived loudness. Low-level features are extracted and
processed (in the statistical sense) in order to carry out a subsequent analysis related to expression.
For example, in the audio domain, these low-level features are related to tempo (i.e., number of
beats per minute), tempo variability, sound level, sound level variability, spectral shape (which is
related to the timbre characteristics of the sound), articulation (features such as legato, staccato),
articulation variability, attack velocity (which is related to the onset characteristics which can
be fast or slow), pitch, pitch density, degree of accent on structural important notes, periodicity
(related to repetition in the energy of the signal), dynamics (intensity), roughness (or sensory
dissonance), tonal tension (or the correlation between local pitch patterns and global or contextual
pitch patterns), and so on.
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Figure 5.1: The layered conceptual framework makes a distinction between syntax and semantics,
and in between, a connection layer that consists of affect / emotion / expressiveness (AEE) spaces
and mappings.
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When more context information is involved (typically in musical sequences that are longer
than 3 seconds), then other categories emerge, in particular, categories related to melody, har-
mony, rhythm, source, and dynamics. Each of these categories has several distinct specifications,
related to an increasing complexity, increasing use of contextual information, and increasing use
of top-down knowledge. The highest category is called the expressive category. This layer can
in fact be developed into a separate layer because it involves affective, emotive and expressive
meanings that cannot be directly extracted from audio structures. Figure 5.1 introduced this layer
as a separate layer that is connected with the syntactical cues using a middle layer of mappings
and spaces. Examples of mappings and spaces will be given below. Whether all these features
are relevant in a context of affect processing and communication of expressiveness is another
matter. The experiments discussed in the next sections tried to shed some light on this issue.

In the domain of movement (dance) analysis, a similar approach can be envisaged that
draws on a distinction between features calculated on different time scales. In this context also,
it makes sense to distinguish between (i) low-level features, calculated on a time interval of a
few milliseconds (e.g., one or a few frames coming from a video camera), (ii) mid-level features,
calculated on a movement stroke (in the following also referred as ”motion phase”), on time
durations of a few seconds, and (iii) high-level features that are related to the conveyed expressive
content (but also to cognitive aspects) and referring to sequences of movement strokes or motion
(and pause) phases. An example of a low-level feature is the amount of contraction/expansion
that can be calculated on just one frame (see Camurri et al. [2003]), i.e., on 40 ms with the
common sample rate of 25 fps. Other examples of low-level features are the detected amount of
movement, kinematical measures (e.g., velocity and acceleration of body parts), measures related
to the occupation of the space surrounding the body. Examples of mid-level descriptors are the
overall direction of the movement in the stroke (e.g., upward or downward) or its directness (i.e.,
how much the movement followed direct paths), motion impulsiveness, and fluency. At this
level it is possible to obtain a first segmentation of movement in strokes that can be employed for
developing an event-based representation of movement. In fact, strokes or motion phases can
be characterized by a beginning, an end, and a collection of descriptors including both mid-level
features calculated on the stroke and statistical summaries (e.g., average, standard deviation),
performed on the stroke, of low-level features (e.g., average body contraction/expansion during
the stroke).

The distinction between low-level, mid-level, and high-level descriptors will be further
discussed in 5.3 as a possible perspective for gesture analysis.
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5.2.2 Semantic Layer

The semantic layer is about the experienced meaning of affective, emotive, expressive processing.
Apart from aesthetic theories of affect processing in music and in dance, experimental studies
were set up that aim at depicting the underlying structure of affect attribution in performing
arts (see next sections). Affect semantics in music has be studied by allowing a large number of
listeners to use adjectives (either on a completely free basis, or taken from an elaborate list) to
specify the affective content of musical excerpts. Afterwards, the data is analyzed and clustered
into categories. The early results of Hevner Hevner [1936], for example, showed that listeners tend
to use 8 different categories of affect attribution. For a recent overview, see Sloboda and Juslin
[2001]. There seems to be a considerable agreement about two fundamental dimensions of
musical affect processing, namely Valence and Activity. Valence is about positively or negatively
valued affects, while Activity is about the force of these affects. A third dimension is often noticed,
but its meaning is less clearly specified. These results provided the basis for the experiments
performed along the project.

5.2.3 Connecting Syntax and Semantics: Maps and Spaces

Different types of maps and spaces can be considered for connecting syntax and semantics. One
type is called the semantic map because it relates the meaning of affective/emotive/expressive
concepts with physical cues of a certain modality. In the domain of music, for example, several
cues have been identified and related to affect processing. For example, tempo is considered to
be the most important factor affecting emotional expression in music. Fast tempo is associated
with various expressions of activity/excitement, happiness, potency, anger and fear while slow
tempo with various expressions of sadness, calmness, dignity, solemnity, dignity. Loud music
may be determinant for the perception of expressions of intensity, power, anger and joy whereas
soft music may be associated with tenderness, sadness, solemnity, and fear. High pitch may be
associated with expressions such as happy, graceful, exciting, anger, fear and activity and low
pitch may suggest sadness, dignity, excitement as well as boredom and pleasantness, and so
on (see overviews in Juslin and Laukka [2003], Gabrielsson and Lindström [2001]). Leman and
colleagues Leman et al. [2005] show that certain automatically extracted low-level features can be
determinants of affect attribution and that maps can be designed that connect audio features with
affect/emotion/expression descriptors. Bresin and Friberg Bresin and Friberg [2000b] synthesised
music performances starting from a semantic map representing basic emotions. Using qualita-
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tive cue descriptions from previous experiments, as listed above, each emotional expression was
modeled in terms of a set of rule parameters in a performance rule system. This yielded a fine
control of performance parameters relating to performance principles used by musicians such as
phrasing and microtiming. A listening experiment was carried out confirming the ability of the
synthesized performances to convey the different emotional expressions. Kinaesthetic spaces or
energy-velocity spaces are another important type of space. They have been successfully used
for the analysis and synthesis of the musical performance Canazza et al. [2003b]. This space is
derived from factor analysis of perceptual evaluation of different expressive music performances.
Listeners tend to use these coordinates as mid level evaluation criteria. The most evident cor-
relation of energy-velocity dimensions with syntactical features is legato-staccato versus tempo.
The robustness of this space is confirmed in the synthesis of different and varying expressive
intentions in a musical performance, by using control based on timing and on dynamics of the
notes. The MIDI parameters typically control tempo and key velocity. The audio-parameters
control tempo, legato, loudness, brightness, attack time, vibrato, and envelope shape.

In human movement and dance the relationship between syntactical features and affect
semantics has been investigated in several studies. For example, in the tradition of the work
by Johansson [1973], it has been shown that it is possible for human observers to perceive emo-
tions in dance from point light displays Walk and Homan [1984], Dittrich et al. [1996]. Pollick
Pollick et al. [2001] analyzed recognition of emotion in everyday movements (e.g., drinking,
knocking) and found significant correlations between motion kinematics (in particular speed)
and the activation axis in the two-dimensional space having as axes activation and valence as
described by Russell Russell [1980] with respect to his circumplex structure of affect. Wallbott
Wallbott [2001] in his paper dealing with measurement of human expression after reviewing a
collection of works concerning movement features related with expressiveness and techniques
to extract them (either manually or automatically), classified these features by considering six
different aspects: spatial aspects, temporal aspects, spatio-temporal aspects, aspects related to
”force” of a movement, ”gestalt” aspects, categorical approaches. Boone and Cunningham
Boone and Cunningham [1998] starting from previous studies by De Meijer Meijer [1989] iden-
tified six expressive cues involved in the recognition of the four basic emotions anger, fear,
grief, and happiness, and further tested the ability of children in recognizing emotions in ex-
pressive body movement through these cues. Such six cues are ”frequency of upward arm
movement, the duration of time arms were kept close to the body, the amount of muscle tension,
the duration of time an individual leaned forward, the number of directional changes in face
and torso, and the number of tempo changes an individual made in a given action sequence”
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Boone and Cunningham [1998].

5.3 Methodologies, perspectives, and tools for gesture analysis

Antonio Camurri, Barbara Mazzarino, Gualtiero Volpe
InfoMus Lab - DIST - University of Genova

Discovering the key factors that characterize gesture, and in particular expressive gesture,
in a general framework is a challenging task. When considering such an unstructured scenario
one often has to face the problem of the poor or noisy characterization of most movements in terms
of expressive content. Thus, a common approach consists in starting research from a constrained
framework where expressiveness in movement can be exploited to its maximum extent. One
such scenario is dance (see for example Camurri et al. [2004c]). Another is music performance
(see for example Dahl and Friberg [2004]). This chapter illustrates some consolidates approaches
to gesture analysis and possible perspectives under which gesture analysis can be performed.

5.3.1 Bottom-up approach

Let us consider the dance scenario (consider, however, that what we are going to say also ap-
plies to music performance). A possible methodology for designing repeatable experiments
is to have a dancer performing a series of dance movements (choreographies) that are distin-
guished by their expressive content. We use the term ”microdance” for a short fragment of
choreography having a typical duration in the range of 15-90 s. A microdance is conceived as
a potential carrier of expressive information, and it is not strongly related to a given emotion
(i.e. the choreography has no explicit gestures denoting emotional states). Therefore, different
performances of the same microdance can convey different expressive or emotional content to
spectators: e.g. light/heavy, fluent/rigid, happy/sad, emotional engagement, or evoked emotional
strength. Human testers/spectators judge each microdance performance. Spectators’ ratings are
used for evaluation and compared with the output of developed computational models (e.g.,
for the analysis of expressiveness). Moreover, microdances can also be used for testing feature
extraction algorithms by comparing the outputs of the algorithms with spectators’ rating of the
same microdance performance (see for example Camurri et al. [2004b] for a work on spectators’
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expectation with respect to the motion of the body center of gravity).

5.3.2 Subtractive approach

Microdances can be useful to isolate factors related to KANSEI and expressiveness and to help in
providing experimental evidence with respect to the cues that choreographers and psychologists
identified. This is obtained by the analysis of differences and invariants in the same microdance
performed with different expressive intentions. Toward this aim, another approach is based
on the live observation of genuinely artistic performances, and their corresponding audiovisual
recordings. A reference archive of artistic performances has to be carefully defined for this
method, chosen after a strict intensive interaction with composers and performers. Image (audio)
processing techniques are utilized to gradually subtract information from the recordings. For
example, parts of the dancer’s body could be progressively hidden until only a set of moving
points remain, deforming filters could be applied (e.g. blur), the frame rate could be slowed down,
etc. Each time information is reduced, spectators are asked to rate the intensity of their emotional
engagement in a scale ranging from negative to positive values (a negative value meaning that
the video fragment would rise some feeling in the spectator but such the feeling is a negative one).
The transitions between positive and negatives rates and a rate of zero (i.e. no expressiveness
was found by the spectator in the analyzed video sequence) would help to identify what are the
movement features carrying expressive information. An intensive interaction is needed between
the image processing phase (i.e. the decisions on what information has to be subtracted) and the
rating phase. This subtractive approach is different from the previous studies by Johansson [1973]
and from more recent results Cowie et al. [2001] where it is demonstrated that a limited number
of visible points on human joints allow an observer to recognize information on movement,
including certain emotional content.

5.3.3 Space views

Gesture can be analyzed under different perspectives. Two of these aspects, space and time, are
briefly discussed here.

A first aspect concerns the space under analysis, i.e. into which extent it is considered
and which level of detail is assumed in the analysis. In his book ”Modern Educational Dance”
choreographer Rudolf Laban Laban [1963] introduces two relevant concepts: the Kinesphere,
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also referred to as Personal Space, and the General Space, the whole space surrounding the
Kinesphere. Laban says:

Whenever the body moves or stands, it is surrounded by space. Around the body is
the sphere of movement, or Kinesphere, the circumference of which can be reached by
normally extended limbs without changing one’s stance, that is, the place of support.
(...) Outside this immediate sphere lies the wider or ”general” space which man can
enter only by moving away from their original stance. (p. 85).

A first distinction can thus be made between analysis in the Personal Space and analysis
in the General Space. Further subdivisions can be made depending on the envisaged level of
detail. For example, it is possible to consider the motion of only one person within the General
Space or the motion of groups in order to analyze the behavior of the group as a whole.

In the Personal Space it is possible to consider global features, e.g. the global amount of
detected motion, or local features, e.g. describing the motion of a given joint or of a given part of
the body.

These subdivisions should not be considered as rigid and static ones, but rather as a
continuum of possibilities through which the focus of attention dynamically moves. Many
analyzes at each of the four levels of detail can be carried out in parallel and their results
integrated toward a global interpretation of the detected movement. Moreover, the space view to
be considered also depends on the kind of gesture under analysis. For example, in the analysis of
a dance ensemble both the analysis in the General Space of the whole ensemble and the analysis
in the Personal Space of each dancer will be important. In analysis of gesture of music performers
movements in the Personal Space of each performer will usually be the focus of the analysis.

5.3.4 Time views

Time also plays an important role, mainly with respect to the time interval during which analyzes
are carried out. This can vary from a few milliseconds (e.g., one frame from a videocamera) to
several minutes (a whole performance) and it depends on the evolution of the performance and
its narrative structure as well as on considerations about how movement/music is perceived by
humans with respect to time.
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As for analysis of music, a taxonomy of descriptors of musical audio has been worked
out by Leman and colleagues (see for example Lesaffre et al. [2003] and Chapter 5.2) in the
context of audio mining. A distinction is made among non-contextual ”low level descriptors
obtained from a frame-based analysis of the acoustical wave”, mid-level descriptors ”derived
from musical context dependencies within time-scales of about 3 seconds” and allowing an event-
based representation of musical objects, and high-level descriptors referring to time intervals
longer than 3 seconds, and related to the cognitive and emotional/affective domains.

A similar approach can also be envisaged for motion descriptors. That is, it is possible
to distinguish between descriptors calculated on different time scales. Low-level descriptors
are calculated over a time interval of a few milliseconds (e.g. one or a few frames from a
videocamera). For example the current amount of contraction/expansion can be calculated with
just one frame. Mid-level descriptors are calculated over time durations of a few seconds.
Examples of such descriptors are the overall direction of the movement in a gesture (e.g. upward
or downward) or its directness. At this level it is also possible to segment movement in gestures
and to develop an event-based representation of movement. High-level descriptors are related
to the conveyed expressive content (but also to cognitive aspects) and refer to sequences of
gestures. Time intervals in the case of dance performances range from a gesture (some seconds),
to a microdance, to a whole dance performance (several minutes).

The time aspect is to a large extent complementary to the space aspect, i.e. it is possible
to have low-level, mid-level, and high-level descriptors for the movement of a limb in the
Personal Space, for the movement of the full-body in the Personal Space, and for the movement
of individuals and groups in the General Space.

5.3.5 Examples of motion descriptors

Here we provide some examples of motion descriptors with details on how to extract them.
With respect to the approaches discussed above these descriptors can be used in the bottom-up
approach for characterizing motion (e.g., microdances). The top-down approach can be used
for validating the descriptors with respect to their role and contribute in conveying expressive
content.

Extraction of motion descriptors follows the layered conceptual framework described in
Chapter 5.2. We also refer to dance (and to microdances) for presenting extraction of motion
descriptors.
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At Layer 1 consolidated computer vision techniques (e.g., background subtraction, motion
detection, motion tracking) are applied to the incoming video frames. Two kinds of outputs
are usually generated: trajectories of points on the dancers’ bodies (motion trajectories) and
processed images. As an example Figure 5.2 shows the extraction of a Silhouette Motion Image
(SMI). A SMI is an image carrying information about variations of the shape and position of the
dancer’s silhouette in the last few frames. SMIs are inspired to MEI and MHI Bobick and Davis
[2001]. We also use an extension of SMIs taking into account the internal motion in silhouettes.

Figure 5.2: The SMI is represented as the red area in the picture.

From such outputs a collection of motion descriptors are extracted including:

• Cues related to the amount of movement (energy) and in particular what we call Quantity
of Motion (QoM). QoM is computed as the area (i.e., number of pixels) of a SMI. It can be
considered as an overall measure of the amount of detected motion, involving velocity and
force.

• Cues related to body contraction/expansion and in particular the Contraction Index (CI),
conceived as a measure, ranging from 0 to 1, of how the dancer’s body uses the space
surrounding it. The algorithm to compute the CI Camurri et al. [2003] combines two
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different techniques: the individuation of an ellipse approximating the body silhouette and
computations based on the bounding region.

• Cues derived from psychological studies, e.g., Boone and Cunningham [1998], such as
amount of upward movement, dynamics of the Contraction Index (i.e., how much CI was
over a given threshold along a time unit);

• Cues related to the use of space, e.g., length and overall direction of motion trajectories.

• Kinematical cues, e.g., velocity and acceleration on motion trajectories.

A relevant task for Layer 2 is motion segmentation. A possible technique for motion
segmentation is based on the measured QoM. The evolution in time of the QoM resembles the
evolution of velocity of biological motion, which can be roughly described as a sequence of
bell-shaped curves (motion bells, see Figure 5.3). In order to segment motion by identifying the
component gestures, a list of these motion bells and their features (e.g., peak value and duration)
is extracted. An empirical threshold is defined to perform segmentation: the dancer is considered
to be moving if the QoM is greater than 2.5% of the total area of the silhouette. It is interesting to
notice that the motion bells approach can also be applied also to sound signal analysis.

Figure 5.3: Motion bells and motion segmentation (Time on the x axis,QoM on the y axis).

Segmentation allows extracting further higher-level cues at Level 2. A concrete example
is the Directness Index (DI), calculated as the ratio between the length of the straight trajectory
connecting the first and the last point of a motion trajectory and the sum of the lengths of each
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segment constituting the trajectory. Furthermore, motion fluency and impulsiveness can be
evaluated. Fluency can be estimated from an analysis of the temporal sequence of motion bells.
A dance fragment performed with frequent stops and restarts will result less fluent than the same
movement performed in a continuous, ”harmonic” way. The hesitating, bounded performance
will be characterized by a higher percentage of acceleration and deceleration in the time unit (due
to the frequent stops and restarts). A first measure of impulsiveness can be obtained from the
shape of a motion bell. In fact, since QoM is directly related to the amount of detected movement,
a short motion bell having a high pick value will be the result of an impulsive movement (i.e.,
a movement in which speed rapidly moves from a value near or equal to zero, to a peak and
back to zero). On the other hand, a sustained, continuous movement will show a motion bell
characterized by a relatively long time period in which the QoM values have little fluctuations
around the average value (i.e., the speed is more or less constant during the movement).

One of the tasks of Layer 4 is to classify dances with respect to their emotional/expressive
content. For example, in a study carried in the framework of the EU-IST Project MEGA results
were obtained on the classification of expressive gestures with respect to their four basic emotions
(anger, fear, grief, joy). In an experiment on analysis of dance performances carried out in
collaboration with the Department of Psychology of Uppsala University (Sweden), a collection
of 20 microdances (5 dancers per 4 basic emotions) was rated by subjects and classified by an
automatic system based on decision trees. Five decision tree models were trained for classification
on five training sets (85% of the available data) and tested on five test sets (15% of the available
data). The samples for the training and test sets were randomly extracted from the data set and
were uniformly distributed along the four classes and the five dancers. The data set included
18 variables extracted from the dance performances. The outcomes of the experiment shows a
rate of correct classification for the automatic system (35.6%) in between chance level (25%) and
spectators’ rate of correct classification (56%): for further information see Camurri et al. [2004c].

5.3.6 Tools: the EyesWeb open platform

The EyesWeb open platform has been designed at DIST-InfoMus Lab with a special focus on the
multimodal analysis and processing of non-verbal expressive gesture in human movement and
music signals Camurri et al. [2000]. Since the starting of the EyesWeb project in 1997, the focus
has been on the development of a system supporting on the one hand multimodal processing
both in its conceptual and technical aspects, and allowing on the other hand fast development of
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robust application prototypes for use in artistic performances and interactive multimedia instal-
lations. In 2001 the platform has been made freely available on the Internet (www.eyesweb.org)
and the number of users has rapidly grown. In recent years, EyesWeb has been satisfactorily used
by the DIST-InfoMus Lab both for research purposes and for several kinds of applications, e.g.,
in museum exhibits and in the field of performing arts. It has also been adopted as standard in
several EU funded research projects (e.g., in the IST Program: projects MEGA, CARE-HERE, ME-
DIATE, TAI-CHI) and thousands of users currently employ it in universities, public and private
research centers, and companies. Recently, the EyesWeb platform has been reconceived in order
to fulfill new requirements coming from the continuously enlarging EyesWeb community. Such
process led to the development of another platform (EyesWeb version 4.0) which is completely
new with respect to its predecessors in the way it deals with the conceptual issues involved
in multimodal processing, in how it supports and implements multimodality, in the additional
features it provides to users Camurri et al. [2004a]. The first beta version of EyesWeb 4.0 has been
publicly released in September 2004.

The EyesWeb open platform consists of a number of integrated hardware and software
modules that can be easily interconnected and extended in a visual environment. The EyesWeb
software includes a development environment and a set of libraries of reusable software com-
ponents that can be assembled by the user in a visual language to build patches as in common
computer music languages inspired to analog synthesizers. EyesWeb supports the user in ex-
perimenting computational models of non-verbal expressive communication and in mapping, at
different levels, gestures from different modalities (e.g., human full-body movement, music) onto
real-time generation of multimedia output (e.g., sound, music, visual media, mobile scenery). It
allows fast development and experiment cycles of interactive performance setups. EyesWeb is
a Win32 multi-thread application. At run-time, an original real-time patch scheduler supports
several modalities of activation for modules in order to support and optimize management and
integration of multimodal streams. A patch is automatically splitted by the scheduler according
to its topology and possible synchronization needs. Asynchronous modules having an internal
dynamics are also supported. They receive inputs as any other kind of modules but their outputs
are asynchronous with respect to their inputs. For example, an ”emotional resonator” able to
react to the perceived expressive content of a dance performance, embedding an internal dynam-
ics, may have a delay in activating its outputs due to its actual internal state, memory of past
events. This is one of the mechanisms explicitly supported by the system to implement interac-
tion metaphors beyond the ”musical instrument” and to support interactive narrative structures.
It should be noted that usually the user does not have to care about activation mechanisms and
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scheduling of the modules, since EyesWeb directly manages these aspects. The user is therefore
free to take care of higher-level tasks, e.g. the interactive narrative structure and dynamic evo-
lution of patches in timelines or execution graphs. EyesWeb supports the integrated processing
of different streams of (expressive) data, such as music audio, video, and, in general, gestural
information.

A set of open libraries of basic modules is available including the following:

• Input and output modules: support for frame grabbers (from webcams to professional
frame grabbers), wireless on-body sensors (e.g., accelerometers), live audio input, video
and audio players (several different video and audio format supported), OSC (OpenSound-
Control), Steinberg ASIO, MIDI, input from devices (e.g., mouse, keyboard, joystick, data
gloves), audio, video, and numeric output both live and recorded on files (e.g., avi, wav,
text files).

• Math and filters: e.g., modules for basic mathematical operations (both on scalars and
matrices), pre-processing, signal conditioning, signal processing in the time and frequency
domains.

• Imaging: processing and conversions of images, computer vision techniques, blob extrac-
tion and analysis, graphic primitives, support to FreeFrame plug-ins.

• Sound and MIDI libraries: audio processing, extraction of audio features in the time and
frequency domains, extraction of features from MIDI, support to VST plug-ins.

• Communication: TCP/IP, serial, OSC, MIDI, Microsoft DCOM.

Users can also build new EyesWeb modules and use them in patches. In order to help
programmers in developing blocks, the EyesWeb Wizard software tool has been developed and
is available. Users can develop autonomously (i.e., possibly independently from EyesWeb) the
algorithms and the basic software skeletons of their own modules. Then, the Wizard supports
them in the process of transforming algorithms in integrated EyesWeb modules. Multiple ver-
sions of modules (versioning mechanism) are supported by the system, e.g., allowing the use
in patches of different versions of the same data-type or module. The compatibility with future
versions of the systems, in order to preserve the existing work (i.e., modules and patches) in the
future is supported.
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EyesWeb has been the basic platform of the MEGA EU IST project. In the EU V Framework
Program it has also been adopted in the IST CARE HERE and IST MEDIATE projects on therapy
and rehabilitation and by the MOSART network for training of young researchers. In the EU
VI Framework Program EyesWeb has been adopted and extended to the new version 4.0 in the
TAI-CHI project (Tangible Acoustic Interfaces for Computer-Human Interaction). Some partners
in the EU Networks of Excellence ENACTIVE and HUMAINE adopted EyesWeb for research.
EyesWeb is fully available at its website (www.eyesweb.org). Public newsgroups also exist and
are daily managed to support the EyesWeb community.

5.3.7 Tools: the EyesWeb Expressive Gesture Processing Library

Many of the algorithms for extracting the motion descriptors illustrated above have been imple-
mented as software modules for the EyesWeb open platform. Such modules are included in the
EyesWeb Expressive Gesture Processing Library.

The EyesWeb Expressive Gesture Processing Library includes a collection of software
modules and patches (interconnections of modules) contained in three main sub-libraries:

• The EyesWeb Motion Analysis Library: a collection of modules for real-time motion tracking
and extraction of movement cues from human full-body movement. It is based on one or
more videocameras and other sensor systems.

• The EyesWeb Space Analysis Library: a collection of modules for analysis of occupation
of 2D (real as well as virtual) spaces. If from the one hand this sub-library can be used to
extract low-level motion cues (e.g., how much time a given position in the space has been
occupied), on the other hand it can also be used to carry out analyses of gesture in semantic,
abstract spaces.

• The EyesWeb Trajectory Analysis Library: a collection of modules for extraction of features
from trajectories in 2D (real as well as virtual) spaces. These spaces may again be either
physical spaces or semantic and expressive spaces.

The EyesWeb Motion Analysis Library (some parts of this library can be downloaded for
research and educational purposes from the EyesWeb website www.eyesweb.org) applies com-
puter vision, statistical, and signal processing techniques to extract expressive motion features
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(expressive cues) from human full-body movement. At the level of processing of incoming visual
inputs the library provides modules including background subtraction techniques for segment-
ing the body silhouette, techniques for individuating and tracking motion in the images from
one or more videocameras, algorithms based on searching for body centroids and on optical flow
based techniques (e.g., the Lucas and Kanade tracking algorithm), algorithms for segmenting the
body silhouette in sub-regions using spatio-temporal projection patterns, modules for extract-
ing a silhouette’s contour and computing its convex hull. At the level of extraction of motion
descriptors a collection of parameters is available. They include the above mentioned Quantity
of Motion, i.e., amount of detected movement, Contraction Index, Stability Index, Asymmetry
Index, Silhouette shape, and direction of body parts. The EyesWeb Motion Analysis Library also
includes blocks and patches extracting measures related to the temporal dynamics of movement.
A main issue is the segmentation of movement in pause and motion phases. Several movement
descriptors can be measured after segmenting motion in motion and pause phases: for exam-
ple, blocks are available for calculating durations of pause and motion phases and inter-onset
intervals as the time interval between the beginning of two subsequent motion phases.

The EyesWeb Space Analysis Library is based on a model considering a collection of
discrete potential functions defined on a 2D space. The space is divided into active cells forming
a grid. A point moving in the space is considered and tracked. Three main kinds of potential
functions are considered: (i) potential functions not depending on the current position of the
tracked point, (ii) potential functions depending on the current position of the tracked point, (iii)
potential functions depending on the definition of regions inside the space. Objects and subjects
in the space can be modeled by time-varying potentials. Regions in the space can also be defined.
A certain number of ”meaningful” regions (i.e., regions on which a particular focus is placed) can
be defined and cues can be measured on them (e.g., how much time a tracked subject occupied a
given region). The metaphor can be applied both to real spaces (e.g., scenery and actors on a stage,
the dancer’s General Space as described by Rudolf Laban) and to virtual, semantic, expressive
spaces (e.g., a space of parameters where gestures are represented as trajectories): for example,
if, from the one hand, the tracked point is a dancer on a stage, a measure of the time duration
along which the dancer was in the scope of a given light can be obtained; on the other hand, if the
tracked point represents a position in a semantic, expressive space where regions corresponds
to basic emotions, the time duration along which a given emotion has been recognized can also
be obtained. The EyesWeb Space Analysis Library implements the model and includes blocks
allowing the definition of interacting discrete potentials on 2D spaces, the definition of regions,
and the extraction of cues (such as, for example, the occupation rates of regions in the space).



5.4. Control of music performance 156

The EyesWeb Trajectory Analysis Library contains a collection of blocks and patches for
extraction of features from trajectories in 2D (real or virtual) spaces. It complements the EyesWeb
Space Analysis Library and it can be used together with the EyesWeb Motion Analysis Library.
Blocks can deal with many trajectories at the same time, for example trajectories of body joints
(e.g., head, hands, and feet tracked by means of color tracking techniques - occlusions are not
dealt with at this stage) or trajectories of points tracked using the Lucas-Kanade feature tracker
available in the Motion Analysis Library. Features that can be extracted include geometric and
kinematics measures. They include Directness index, Trajectory length, Trajectory local and
average direction, Velocity, Acceleration, and Curvature. Descriptive statistic measures can also
be computed both along time (for example, average and peak values of features calculated
either on running windows or on all the samples between two subsequent commands such as the
average velocity of the hand of a dancer during a given motion phase) and among trajectories (for
example, average velocity of groups of trajectories available at the same time such as the average
instantaneous velocity of all the tracked points located on the arm of a dancer). Trajectories can
be real trajectories coming from tracking algorithms in the real world (e.g., the trajectory of the
head of a dancer tracked using a tracker included in the EyesWeb Motion Analysis Library) or
trajectories in virtual, semantic spaces (e.g., a trajectory representing a gesture in a semantic,
expressive space).

5.4 Control of music performance

Anders Friberg and Roberto Bresin
KTH, Department of Speech, Music and Hearing

5.4.1 Introduction

Here we will look at the control of music on a higher level dealing with semantic/gestural
descriptions rather than the control of each note as in a musical instrument. It is similar to the
role of the conductor in a traditional orchestra. The conductor controls the overall interpretation
of the piece but leaves the execution of the notes to the musicians. A music performance
system typically consists of a human controller using gestures that are tracked and analysed by
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a computer generating the performance. An alternative could be to use audio input. In this
case the system would follow a musician or even computer-generated music. What do we mean
by higher level control? The methods for controlling a music performance can be divided in
three different categories: (1) Tempo/dynamics. A simple case is to control the instant values of
tempo and dynamics of a performance. (2) Performance models. Using performance models for
musical structure, such as the KTH rule system (see also Section 5.4.2), it is possible to control
performance details such as how to perform phrasing, articulation, accents and other aspect
of a musical performance. (3) Semantic descriptions. These descriptions can be an emotional
expression such as aggressive, dreamy, melancholic or typical performance instructions (often
referring to motion) such as andante or allegretto. The input gestures/audio can by analyzed
in different ways roughly similar to the three control categories above. However, the level of
detail obtained by using the performance models cannot in the general case be deduced from a
gesture/audio input. Therefore, the analysis has to be based on average performance parameters.
The overview of audio analysis including emotion descriptions is found in Section 5.4.1. The
analysis of gesture cues is described in Chapter 5.3, above.

The fuzzy analyzer, described more in detail below, is a real time system for analyzing
emotional expression from both audio and gestures. Several conductor systems using control
of tempo and dynamics (thus mostly category 1) has been constructed in the past. The Radio
Baton system, designed by Mathews [1989], was one the first systems and is still used both
for conducting a score as well as a general controller. The Radio baton controller consists of
two sticks and a rectangular plate. The 3D position of each stick above the plate is measured.
Typically one stick is used for beating the time and the other stick is used for controlling dynamics.
Using the conductor software, a symbolic score (a converted midi file) is played through a MIDI
synthesizer. The system is very precise in the sense that the position of each beat is exactly
given by the downbeat gesture of the stick. This allows for very accurate control of tempo but
also requires practice - even for an experienced conductor! A more recent system controlling
both audio and video is the Personal Orchestra developed by Borchers et al. [2004] and its further
development in You’re the Conductor [see Lee et al., 2004]. These systems are conducted using a
wireless baton with infrared light for estimating baton position in two dimensions. The Personal
Orchestra is an installation in House of Music in Vienna, Austria, where the user can conduct real
recordings of the Vienna Philharmonic Orchestra. The tempo of both the audio and the video
as well the dynamics of the audio can be controlled yielding a very realistic experience. The
tempo is due to restrictions in the time manipulation model only controlled in discrete steps.
The installation You’re the conductor is also a museum exhibit but aimed for children rather
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than adults. Therefore it was carefully designed to be intuitive and easily used. This time it is
recordings of the Boston Pops orchestra that is conducted. A new time stretching algorithm was
developed allowing any temporal changes of the original recording. From the experience with
children users they found that the most efficient interface was a simple mapping of gesture speed
to tempo and gesture size to volume. Several other conducting systems have been constructed.
For example, the Conductor’s jacket by Marrin Nakra [2000] senses several body parameters such
as muscle tension and respiration that is translated to musical expression. The Virtual Orchestra
is a graphical 3D simulation of an orchestra controlled by a baton interface developed by Ilmonen
[2000]. In the following we will look more closely on the systems we have been developed using
music performance models and semantic descriptions. It will start with an analyzer of emotional
expression in gestures and music, present the KTH rule system and finally describe a “home
conductor” system using these tools.

A fuzzy analyzer of emotional expression in music and gestures

An overview of the analysis of emotional expression is given in the contribution by OFAI in
this CD. We will here1 focus of one such analysis system aimed at real time applications. As
mentioned, for basic emotions such as happiness, sadness or anger, there is a rather simple
relationship between the emotional description and the cue values (i.e. measured parameters
such as tempo, sound level or articulation). Since we are aiming at real-time playing applications
we will focus here on performance cues such as tempo and dynamics. The emotional expression
in body gestures has also been investigated but to a lesser extent than in music. Camurri et al.
[2003] analyzed and modeled the emotional expression in dancing. Boone and Cunningham
[1998] investigated children’s movement patterns when they listened to music with different
emotional expressions. Dahl and Friberg [2004] investigated movement patterns of a musician
playing a piece with different emotional expressions. These studies all suggested particular
movement cues related to the emotional expression, similar to how we decode the musical
expression. We follow the idea that musical expression is intimately coupled to expression in
body gestures and biological motion in general [see Friberg and Sundberg, 1999, Juslin et al.,
2002]. Therefore, we try to apply similar analysis approach to both domains. Table 5.1 presents
typical results from previous studies in terms of qualitative descriptions of cue values. As seen
in the Table, there are several commonalities in terms of cue descriptions between motion and

1This section is a modification and shortening of the paper by Friberg [2005]
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Emotion Motion cues Music performance cues

Anger Large Loud
Fast Fast
Uneven Staccato
Jerky Sharp timbre

Sadness Small Soft
Slow Slow
Even soft Legato

Happiness Large Loud
Rather fast Fast

Staccato
Small tempo variability

Table 5.1: A characterization of different emotional expressions in terms of cue values for body
motion and music performance. Data taken from Dahl and Friberg (2004) and Juslin (2001).

music performance. For example, anger is characterized by both fast gestures and fast tempo.
The research regarding emotional expression yielding the qualitative descriptions as given in
Table 5.1 was the starting point for the development of current algorithms.

The analysis of emotional expression in music performance/gestures is realized in three
steps:

1. Cue extraction. The first step is the extraction of basic cues. These cues are quite well de-
fined for music input consisting of traditional tone parameters such as sound level, tempo,
and articulation (staccato/legato). The audio cue extraction was designed for monophonic
playing or singing. A previous prototype was described in [Friberg et al., 2002] and an
improved version for non-real time use is found in [Friberg et al., in press]. The first part
of the cue extraction segments the audio stream into tones by computing two different
sound level envelopes using different time constants. The first sound level envelope fol-
lows roughly the shape of each tone and the second sound level envelope follows the
general shape of the phrase. The crossings of two envelopes define the tone onsets and
offsets. For each segmented tone five different cues are computed: sound level (dB), instant
tempo (tones/second), articulation (relative pause duration), attack rate (dB/ms), and high-
frequency content (high/low energy). In the body motion analysis we have been interested



5.4. Control of music performance 160

in parameters describing general features of the movements rather than individual move-
ments of each limb. A number of such general cues have been identified and algorithms
have been developed for automatic extraction from video input using the EyesWeb plat-
form [Camurri et al., 2004d, 2000], and Chapter 5.3. The current version of the cue analysis
uses only a few basic tools within EyesWeb. In order to remove the background, the first
step is to compute the difference signal between consecutive video frames. This means that
the algorithm just “see” something when there is a movement. The use of difference signals
makes the system quite robust and insensitive to e.g. light variations in the room. Three
cues are computed from the difference signal. The total number of visible pixels constitutes
the cue Quantity of Motion (QoM). The bounding rectangle defines the area in the picture
that contains all non-zero pixels. The instant width and height of the bounding rectangle
are computed and their peak-to-peak amplitude variations constitute the cues width-pp
and height-pp.

2. Calibration. The second step is a semi-automatic calibration of cues. This is important
for practical reasons in order to avoid otherwise lengthy optimization sessions trying to
fine-tune internal parameters adapting to variations in musical content/body gestures or
technical setup. Each cue is standardized, meaning that it is subtracted by its mean value
and divided by its standard deviation. This results in cues with a mean of 0 and a standard
deviation of 1. This is an important step implying that the following mapping does not
need to be adjusted if the input conditions change, such as change of instrument, dancer,
or artistic material. This requires a calibration phase before the recognition system is used
in which the user is asked to move or play in, for example, a happy, sad and angry way
thus defining the space of all possible variations.

3. Expression mapping. The third step is the mapping from calibrated cues to emotion descrip-
tion. Instead of using the more common data-driven methods, such as Neural Networks
or Hidden Markov Models, we suggest here fuzzy set functions, allowing the direct use
of qualitative data obtained from previous studies. For example Juslin and Laukka [2003]
present a meta-analysis of about 40 studies regarding emotional expression in music. Most
often, cues have been characterized mainly in terms of being either high or low in relation
to different emotional expressions. One interesting extension in the meta-analysis was to
classify some cues in terms of three levels. It indicated that an intermediate cue level might
be important in some cases. This was used in the mapping algorithm. Following these
ideas, we suggest here a method that uses the qualitative cue descriptions divided in three
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Figure 5.4: Qualitative classification of cues in terms of the three regions high (+), medium (0),
and low (-), each with a separate output.

levels in order to predict the intended emotion. The same method is used both for musical
and body motion cues. It uses fuzzy set functions to go from continuous cues to qualitative
cues [Niskanen, 2004, Zimmerman, 1996, Seif El-Nasr et al., 2000, Bresin et al., 1995]. Each
cue is divided into a three overlapping region functions, see Figure 5.4. Within a region the
corresponding output is one and outside the region it is zero with an overlapping linear area
at the boundaries. The final emotion prediction output is computed by taking an average of
a selected set of fuzzy set functions. This selection is done according to previous qualitative
descriptions. This results in a continuous output for each emotion with a range 0-1. If the
value is 1 the emotion is completely predicted if it is 0 it is not at all predicted. Using an
average of a set of region functions makes the output smoothly changing between emotions
depending on the number of “right” cues. This averaging method was selected with the
final application in mind. For example, if this algorithm is used for controlling the musical
expressivity in computer-played performance, the transitions between different emotions
need to be smooth. Other applications might ask for a discrete classification of emotional
expression. This could be easily modeled using fuzzy logic.

The complete system is shown in Figure 5.5 using three cues extracted from audio input.
The same setup is used for the body motion analysis using the body motion cues. The use of three
cues with the mapping configuration indicated by the colored arrows in this example, has the
advantage that emotion outputs are mutually exclusive, that is, if one output is 1, the other outputs
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Figure 5.5: The complete system for estimating emotional expression in music performance using
three cues. An audio input is analyzed in terms of tempo, sound level and articulation and the
resulting prediction of emotional expression is output in terms of three functions ranging from 0
to 1.

are 0. All parts of the fuzzy analyzer except the motion cue analysis have been implemented using
the program Pddeveloped by Puckette [1996]. Pdis a modular graphic environment for processing
primarily audio and control information in real time. The fuzzy analyzer was implemented using
preexisting blocks in the release Pd-extended 0.37, complemented with the library SMLib made
by Johannes Taelman. The video cue analysis was implemented as a patch in EyesWeb, a similar
graphic programming environment primarily for video processing [Camurri et al., 2000]. The
audio analyzer makes modest claims on processing power and typically uses only a few percent
of a Pentium 4 processor running Windows. Due to the cross-platform compatibility of Pd, the
audio cue analysis could easily be ported to MacOS or Linux. The video cue analysis is currently
restricted to the Windows platform.

Applications using the fuzzy analyser

The first prototype that included an early version of the fuzzy analyzer was a system that allowed
a dancer to control the music by changing dancing style. It was called The Groove Machine and
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Figure 5.6: Two different examples of the Expressiball giving visual feedback of musical perfor-
mance. Dimensions used in the interface are: X = tempo, Y =sound pressure level, Z =spectrum
(attack time and spectrum energy), Shape = articulation, Colour = emotion. Left figure shows
the feedback for a sad performance. Right figure shows the feedback for an angry performance.

was presented in a performance at Kulturhuset, Stockholm 2002. Three motion cues were used,
QoM, maximum velocity of gestures in the horizontal plane, and the time between gestures in the
horizontal plane, thus slightly different from the description above. The emotions analyzed were
(as in all applications here) anger, happiness, and sadness. The mixing of three corresponding
audio loops was directly controlled by the fuzzy analyzer output. For a more detailed description
[Lindström et al., 2005]. The ExpressiBall, developed by Roberto Bresin, is a way to visualize a
music performance in terms of a ball on a computer screen [Friberg et al., 2002]. A microphone
is connected to the computer and the output of the fuzzy analyzer as well as the basic cue values
are used for controlling the appearance of the ball. The position of the ball is controlled by
tempo, sound level and a combination of attack velocity and spectral energy, the shape of the
ball is controlled by the articulation (rounded-legato, polygon-staccato) and the color of the ball
is controlled by the emotion analysis (red-angry, blue-sad, yellow-happy), see Figure 5.6. The
choice of color mapping was motivated by recent studies relating color to musical expression
[Bresin, 2005, Bresin and Juslin, 2005]. The ExpressiBall can be used as a pedagogical tool for
music students or the general public. It may give an enhanced feedback helping to understand
the musical expression. A future display is planned at Tekniska museet, Stockholm.

The latest application using the fuzzy analyzer has been the collaborative game Ghost in
the Cave [Rinman et al., 2004]. It uses as its main input control either body motion or voice. One
of the tasks of the game is to express different emotions either with the body or the voice; thus,
both modalities are analyzed using the fuzzy analyzer described above. The game is played in
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Figure 5.7: Picture from the first realization of the game Ghost in the Cave. Motion player to the
left (in white) and voice player to the right (in front of the microphones).

two teams each with a main player, see Figure 5.7. The task for each team is to control a fish
avatar in an underwater environment and to go to three different caves. In the caves there is a
ghost appearing expressing different emotions. Now the main players have to express the same
emotion, causing their fish to change accordingly. Points are given for the fastest navigation and
the fastest expression of emotions in each subtask. The whole team controls the speed of the fish
as well as the music by their motion activity. The body motion and the voice of the main players
are measured with a video camera and a microphone, respectively, connected to two computers
running two different fuzzy analyzers described above. The team motion is estimated by small
video cameras (webcams) measuring the Quantity of Motion (QoM). QoM for the team motion
was categorized in three levels (high, medium, low) using fuzzy set functions as shown in
Figure 5.4. The music consisted of pre-composed audio sequences, all with the same tempo and
key, corresponding to the three motion levels. The sequences were faded in and out directly by
control of the fuzzy set functions. One team controlled the drums and one team controlled the
accompaniment. The Game has been set up five times since the first realization summer at the
Stockholm Music Acoustics Conference 2003, including the Stockholm Art and Science festival,
Konserthuset, Stockholm, 2004, and Oslo University, 2004.
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Summary and discussion

We describe a system that can be used for analyzing emotional expression both in music and body
motion. The use of fuzzy mapping was a way of directly using previous results summarized in
various investigations and turned out to be a robust mapping also in practical testing during the
development of the applications.

The advantages of the model can be summarized as:
Generic - it is the same model for music performance and body motion.
Robust - The fuzzy set functions always stay between 0 and 1 implying that the emotion output
is always between 0 and 1 as well. A collection of cues lowers the error influence from one cue
proportionally.
Handle nonlinearities - This is not possible in e.g. a linear regression model.
Smooth transitions between emotions - This is achieved by the overlapping fuzzy set functions each
with transition range.
Flexibility - It is easy to change the mapping using for example more cues since there is no need
recalibrate the system.

The use of higher-level expression descriptions such as emotions has the advantage that
it can provide a natural coherence between the controller’s expression (visual or auditive) and
the expression of the control device (could be a synthesizer, visual effects etc.) in a public
performance. Take an example with a dancer controlling the music performance with a one-to-
one correspondence between high-level description in the body motion and music performance.
When the movements of the dancer are aggressive - the music also sounds aggressive. For a
discussion of evaluation issues see [Friberg, 2005].

5.4.2 The KTH rule system for music performance

The KTH rule system is a result of an on-going long-term research project about music perfor-
mance initiated by Johan Sundberg [e.g. Sundberg et al., 1983, Sundberg, 1993, Friberg, 1991,
Friberg and Battel, 2002]. The idea of the rule system is to model the variations introduced by
the musician when playing a score. The rule system contains currently about 30 rules model-
ing many performance aspects such as different types of phrasing, accents, timing patterns and
intonation, see Table 5.2. Each rule introduce variations in one or several of the performance
variables IOI (Inter-Onset Interval), articulation, tempo, sound level, vibrato rate, vibrato extent
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as well a modifications of sound level and vibrato envelopes. Most rules operate on the “raw”
score using only note values as input. However, some of the rules for phrasing as well as for
harmonic, melodic charge need a phrase analysis and a harmonic analysis provided in the score.
This means that the rule system does not in general contain analysis models. This is a separate
and complicated research issue. One exception is the punctuation rule which includes a melodic
grouping analysis [Friberg et al., 1998].

Table 5.2: Most of the rules in Director Musices, show-
ing the affected performance variables (sl= sound level,
dr = interonset duration, dro = offset to onset duration,
va = vibrato amplitude, dc = cent deviation from equal
temperament in cents)

M P C

Rule Name Performance

Variables

Short Description

High-loud sl The higher the pitch, the louder

Melodic-charge sl dr va Emphasis on notes remote from

current chord

Harmonic-charge sl dr Emphasis on chords remote

from current key

Chromatic-charge dr sl Emphasis on notes closer in

pitch; primarily used for atonal

music

Faster-uphill dr Decrease duration for notes in

uphill motion

Leap-tone-duration dr Shorten first note of an up-leap

and lengthen first note of a

down-leap

Leap-articulation-dro dro Micropauses in leaps

Repetition-articulation-dro dro Micropauses in tone repetitions

Continued on next page
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Table 5.2: (continued)

M D M C

Rule Name Performance

Variables

Short Description

Duration-contrast dr sl The longer the note, the longer

and louder; and the shorter the

note, the shorter and softer

Duration-contrast-art dro The shorter the note, the longer

the micropause

Score-legato-art dro Notes marked legato in scores

are played with duration over-

lapping with interonset dura-

tion of next note; resulting onset

to offset duration is dr+dro

Score-staccato-art dro Notes marked staccato in scores

are played with micropause; re-

sulting onset to offset duration

is dr-dro

Double-duration dr Decrease duration contrast for

two notes with duration relation

2:1

Social-duration-care dr Increase duration for extremely

short notes

Inegales dr Long-short patterns of consec-

utive eighth notes; also called

swing eighth notes

Continued on next page
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Table 5.2: (continued)

Ensemble-swing dr Model different timing and

swing ratios in an ensemble pro-

portional to tempo

Offbeat-sl sl Increase sound level at offbeats

I

Rule Name Performance

Variables

Short Description

High-sharp dc The higher the pitch, the sharper

Mixed-intonation dc Ensemble intonation combining

both melodic and harmonic in-

tonation

Harmonic-intonation dc Beat-free intonation of chords

relative to root

Melodic-intonation dc Close to Pythagorean tuning,

e.g., with sharp leading tones

P

Rule Name Performance

Variables

Short Description

Punctuation dr dro Automatically locates small

tone groups and marks them

with lengthening of last note

and a following micropause

Continued on next page
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Table 5.2: (continued)

Phrase-articulation dro dr Micropauses after phrase and

subphrase boundaries, and

lengthening of last note in

phrases

Phrase-arch dr sl Each phrase performed with

arch-like tempo curve: starting

slow, faster in middle, and ritar-

dando towards end; sound level

is coupled so that slow tempo

corresponds to low sound level

Final-ritard dr Ritardando at end of piece,

modeled from stopping runners

Continued on next page
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Table 5.2: (continued)

S

Rule Name Performance

Variables

Short Description

Melodic-sync dr Generates new track consisting

of all tone onsets in all tracks; at

simultaneous onsets, note with

maximum melodic charge is se-

lected; all rules applied on this

sync track, and resulting du-

rations are transferred back to

original tracks

Bar-sync dr Synchronize tracks on each bar

line

The rules are designed using two methods, (1) the analysis-by-synthesis method, and (2)
the analysis-by-measurements method. In the first method, the musical expert, Lars Frydén in
the case of the KTH performance rules, tells the scientist how a particular performance principle
functions. The scientist implements it, e.g. by implementing a function in lisp code. The expert
musician tests the new rules by listening to its effect produced on a musical score. Eventually the
expert asks the scientist to change or calibrate the functioning of the rule. This process is iterated
until the expert is sutisfied with the results. An example of a rule obtained by applying the
analysis-by-synthesis method is the Duration Contrast rule in which shorter notes are shortened
and longer notes are lengthened [Friberg, 1991]. The analysis-by-measurements method consists
of extracting new rules by analyzing databases of performances. For example two databases
have been used for the design of the articulation rules. One database consisted in the same
piece of music2 performed by five pianists with nine different expressive intentions. The second
database was made by 13 WA Mozart piano sonatas performed by a professional pianist. The
performances of both databases were all made on computer-monitored grand pianos, a Yamaha
Diskavier for the first database, and a Bösendorfer SE for the second one [Bresin and Battel, 2000,

2Andante movement of Mozart’s sonata in G major, K 545.
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Bresin and Widmer, 2000].

For each rule there is one main parameter k which controls the overall rule amount. When
k = 0 there is no effect of the rule and when k = 1 the effect of the rule is considered normal.
However, this “normal” value is selected arbitrarily by the researchers and should be used only
for the guidance of parameter selection. By making a selection of rules and k values different
performance styles and performer variations can be simulated. Therefore, the rule system should
be considered as a musician’s toolbox rather than providing a fixed interpretation (see 5.8).

Figure 5.8: Functioning scheme of the KTH performance rule system.

A main feature of the rule system is that it most rules are related to the performance of
different structural elements in the music (Friberg and Battel, 2002). Thus, for example, the
phrasing rules enhance the division in phrases already apparent in the score. This indicates
an interesting limitation for the freedom of expressive control: it is not possible to violate
the inherent musical structure. One example would be to make ritardandi and accelerandi
in the middle of a phrase. From our experience with the rule system such a violation will
inevitably not be perceived as musical. However, this toolbox for marking structural elements
in the music can also be used for modeling musical expression on the higher semantic level.
Performances of emotional expressions can easily be modeled using different selections of rules
and rule parameters as demonstrated by Bresin and Friberg [2000a]. Table 5.3 shows a possible
organization of rules and their k parameters for obtaining performances with different emotional
expressions.
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Table 5.3: Cue profiles for emotions Anger, Happiness
and Sadness, as outlined by Juslin [2001], and com-
pared with the rule set-up utilized for the synthesis of
expressive performances with Director Musices(DM)

A

Expressive Cue Juslin Macro-Rule in DM

Tempo Fast Tone IOI is shortened by 20%

Sound level High Sound level is increased by 8 dB

Abrupt tone attacks Phrase arch rule applied on

phrase level and on sub-phrase

level

Articulation Staccato Duration contrast articulation

rule

Time deviations Sharp duration con-

trasts

Duration contrast rule

Small tempo variabil-

ity

Punctuation rule

H

Expressive Cue Juslin Macro-Rule in DM

Tempo Fast Tone IOI is shortened by 15%

Sound level High Sound level is increased by 3 dB

Articulation Staccato Duration contrast articulation

rule

Large articulation

variability

Score articulation rules

Time deviations Sharp duration con-

trasts

Duration contrast rule

Continued on next page
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Table 5.3: (continued)

Small timing varia-

tions

Punctuation rule

S

Expressive Cue Juslin Macro-Rule in DM

Tempo Slow Tone IOI is lengthened by 30%

Sound level Low Sound level is decreased by 6 dB

Articulation Legato Duration contrast articulation

rule

Articulation Small articulation va-

iability

Score legato articulation rule

Time deviations Soft duration contrasts Duration contrast rule

Large timing varia-

tions

Phrase arch rule applied on

phrase level and sub-phrase

level

Phrase arch rule applied on sub-

phrase level

Final ritardando Obtained from the Phrase rule

with the next parameter

Director Musices3 (DM) is the main implementation of the rule system and is a stand-alone
lisp program available for Windows, MacOS, and GNU/Linux documented in [Friberg et al., 2000]
and [Bresin et al., 2002].

3http://www.speech.kth.se/music/performance/download/dm-download.html
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pDM - Real time control of the KTH rule system

In DM and its lisp environment there is no support for real time music processing. Therefore,
in order implement a real time control of the rules we needed a new application. We selected
two-step approach using a combination of DM and a player. The rules are first applied to the
score in DM producing an enhanced score containing all the possible rule-induced variations of
performance parameters. This new score is then played by an application written in Pd. There
were several advantages using this approach. First of all, it was not necessary to reimplement the
rule system - a long and tedious process since each rule needs to be verified on several musical
examples. Also, it avoids the splitting into two different systems to support. The first prototype
following this approach was made by Canazza et al. [2003a] using the EyesWeb platform. In the
following we give an overview of the procedure including a description of the pDM player. For
a more detailed description, see [Friberg, in press].

Rule application In the first step, the rules are applied to the score using DM. Most of the
relevant rules defined in DM are applied with their default quantities. Each rule is applied on
the original score and normalized with respect to overall length and dynamics. The deviations
in the performance parameters tempo, sound level, and articulation are collected for each note.
The original score together with all the individual rule deviations are stored in a custom pDM
file format.

pDM player In the second step, the produced score is loaded into pDM, which is essentially an
extended sequencer. Since all rule knowledge is kept in DM the structure of pDM is quite simple
and is written in Pd-extended v. 0.37 using only the provided libraries. The sequencer is centered
around the qlist object in Pd. qlist is a text-based sequencer allowing any data provided in an
input file to be executed in time order. During playing, each of the three basic score parameters
tempo (Tnom), sound level (SLnom) and duration (DURnom) are modified using a weighting factor
ki for each rule:

T = Tnom · (1 +
14
∑

i=1

ki∆Ti) (5.1)
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SL = SLnom · (1 +
11
∑

i=1

ki∆SLi) (5.2)

DUR = DURnom · (1 +
5
∑

i=1

ki∆ARTi) (5.3)

where T, SL, DUR stands for the resulting tempo, sound level, and duration; i is the
rule parameter number, ki is the weighting factor for the corresponding rule, and Ti, SLi, DURi

are the rule deviations given in the pDM file. According to the formulas above, the effect of
several simultaneous rules acting on the same note is additive. This might lead to that the same
note receives too much or contrary amount of deviations. This is in reality not a big problem
and some rule interaction effects are already compensated for in the DM rule application. For
example, the Duration contrast rule (shortening of relatively short notes) is not applied where the
Double duration rule would be applied and lengthen relatively short notes. These performance
parameters are computed just before a note is played. In this way, there is no perceived delay
from a real-time input since all control changes will appear at the next played note. Figure 5.9
shows the window for individual rule control in which the rule weights can be manipulated.

pDM Expression mappers pDM contains a set of mappers that translate high-level expression
descriptions into rule parameters. We have mainly used emotion descriptions (happy, sad, angry,
tender) but also other descriptions such as hard, light, heavy or soft has been implemented.
The emotion descriptions have the advantages that there has been substantial research made
describing the relation between emotions and musical parameters [Sloboda and Juslin, 2001,
Bresin and Friberg, 2000a]. Also, these basic emotions are easily understood by laymen. Typically,
these kinds of mappers have to be adapted to the intended application as well as considering the
function of the controller being another computer algorithm or a gesture interface. Usually there
is a need for interpolation between the descriptions. One option implemented in pDM is to use
a 2D plane in which each corner is specified in terms of a set of rule weightings corresponding to
a certain description. When moving in the plane the rule weightings are interpolated in a semi-
linear fashion. This 2D interface can easily be controlled directly with the mouse. In this way,
the well-known Activity-Valence space for describing emotional expression can be implemented
[Juslin, 2001]. Activity is related to high or low energy and Valence is related to positive or
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Figure 5.9: pDM window for controlling individual rule parameters. The sliders to the left control
the overall amount of each rule (ki values).

negative emotions. The quadrants of the space can be characterized as happy (high activity,
positive valence), angry (high activity, negative valence), tender (low activity, positive valence),
and sad (low activity, negative valence). An installation using pDM in which the user can change
the emotional expression of the music while it is playing is currently part of the exhibition “Se
Hjärnan” (Swedish for “See the Brain”) touring Sweden for two years.

5.4.3 A home conducting system

Typically the conductor express by gestures overall aspects of the performance and the musician
interpret these gestures and fill in the musical details. However, previous conductor systems
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Figure 5.10: Overall schematic view of a home conductor system.

have often been restricted to the control of tempo and dynamics. This means that the finer
details will be static and out of control. An example would be the control of articulation. The
articulation is important for setting the gestural and motional quality of the performance but
cannot be applied on an average basis. Amount of articulation (staccato) is set on a note-by-
note basis dependent on melodic line and grouping, as reported by Bresin and Battel [2000] and
Bresin and Widmer [2000]. This makes it too difficult for a conductor to control directly. By using
the KTH rule system with pDM described above these finer details of the performance can be
controlled on a higher level without the necessity to shape each individual note. Still the rule
system is quite complex with a large number of parameters. Therefore, the important issue when
making such a conductor system is the mapping of gesture parameters to music parameters.
Tools and models for doing gesture analysis in terms of semantic descriptions of expression has
recently been developed, see above. Thus, by connecting such a gesture analyzer to pDM we
have a complete system for controlling the overall expressive features of a score. An overview
of general system is given in Figure 5.10.

Recognition of emotional expression in music has been shown to be an easy task for most
listeners including children from about 6 years of age even without any musical training [Peretz,
2001, see e.g.]. Therefore, by using simple high-level emotions descriptions such as (happy, sad,
angry) the system have the potential of being intuitive and easily understood by most users
including children. Thus, we envision a system that can be used by the listeners in their homes



5.4. Control of music performance 178

rather than a system used for the performers on the stage. Our main design goals have been
a system that is (1) easy and fun to use for novices as well as experts, (2) realized on standard
equipment using modest computer power. In the following we will describe the system more in
detail starting with the gesture analysis followed by different mapping strategies.

Gesture cue extraction We use a small video camera (webcam) as input device analysed by a
robust and simple motion detection algorithm. The video signal is analyzed with the EyesWeb
tools for gesture recognition [Camurri et al., 2000, 2004d]. The first step is to compute the
difference signal between video frames. This is a simple and convenient way of removing all
background (static) information in the picture. Thus, there is no need to worry about special
lightning, clothes or background content. For simplicity, we have been using a limited set of
tools within EyesWeb such as the overall quantity of motion (QoM), x y position of the overall
motion, size and velocity of horizontal and vertical gestures.

Mapping gesture cues to rule parameters Depending on the desired application and user
ability the mapping strategies can be divided in three categories:

Level 1 (listener level) The musical expression is controlled in terms of basic emotions (happy,
sad, angry). This creates an intuitive and simple music feedback comprehensible without the
need for any particular musical knowledge.

Level 2 (simple conductor level) Basic overall musical features are controlled using for example
the energy-kinematics space previously found relevant for describing the musical expression as
in [Canazza et al., 2003b].

Level 3 (advanced conductor level) Overall expressive musical features or emotional expres-
sions in level 1 and 2 are combined with the explicit control of each beat similar to the Radio-Baton
system.

Using several interaction levels makes the system suitable both for novices, children and
expert users. Contrary to traditional instruments, this system may “sound good” even for a
beginner when using a lower interaction level. It can also challenge the user to practice in order
to master higher levels similar to the challenge provided in computer games. A few complete
prototypes for level 1 and 2 have been assembled and tested using different mappings. One direct
way of a simple interface on level 1 is to extract the semantic expressive descriptions from the
motion cues using the fuzzy analyzer described above and connect that to the emotion control
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in pDM. However, the mapping that we have used the most is a simpler but effective gesture
interface mapping. It uses two cues from the video analysis: (1) overall quantity of motion
(QoM) computed as the total number of visible pixels in the difference image, (2) the vertical
position computed as the center of gravity for the visible pixels in the difference image. These
two cues are directly mapped to the Activity-Valence emotion space included in pDM with QoM
connected to Activity (high QoM - high Activity) and vertical position connected to Valence (high
position-positive Valence). This interface has been demonstrated several times with very positive
responses. However, formal testing in form of usability studies is planned in future work.

5.5 Controlling sound production

Roberto Bresin and Kjetil Falkenberg Hansen
KTH, Dept. of Speech, Music and Hearing

Matti Karjalainen, Teemu Mäki-Patola, Aki Kanerva, and Antti Huovilainen
Helsinki University of Technology

Sergi Jordà, Martin Kaltenbrunner, Günter Geiger, Ross Bencina
Universitat Pompeu Fabra, Music Technology Group/IUA

Amalia de Götzen and Davide Rocchesso
University of Verona, Dept. of Computer Science

The structure of this chapter is a particular one, it is made of five contributions by different
authors. Each contribution is self-contained and can be read separately. The main reason for
this structure is that the field of sound control is a relative new one and it is open to different
approaches and applications. In this chapter we try to summarize what it is the state-of-the-art in
the field within the Consortium partners of the S2S2 Coordinating Action. The chapter starts with
an introductory part in which we present general concepts and problems related to sound control.
In particular it is outlined the important issue of the choice of sound models that can give suitable
and responsive feedback in continuous control, as in the cases of sound generated by body motion
and sound as feedback in interaction. The introductory part is followed by four sections in which
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we present state-of-the-art applications. The first two sections, ”DJ Scratching” and ”Virtual Air
Guitar”, focus on the control of musical instruments, and in particular on control that makes sense
of sound production. The next two sections, ”The reacTable*” and ”The Interactive Book”, focus
on the control of sounding objects, and are characterized by applications that control sounds
that make sense. The chapters sequence can also be seen as ordered after increasing abstraction
of sound models (from sampled sounds to cartoonized sounds) and decreasing complexity of
gesture control (from DJ scratching to simple sliding).

Authors of the different sessions are:

5.5.1 Introduction
Roberto Bresin and Davide Rocchesso

5.5.2 DJ scratching with Skipproof
Kjetil Falkenberg Hansen and Roberto Bresin

5.5.3 Virtual air guitar
Matti Karjalainen, Teemu Mäki-Patola, Aki Kanerva, and Antti Huovilainen

5.5.4 The reacTable*
Sergi Jordà, Martin Kaltenbrunner, Günter Geiger, Ross Bencina

5.5.5 The interactive book
Amalia de Götzen and Davide Rocchesso

5.5.1 Introduction

4 With the new millennium there are a few emerging facts that are conditioning our present
approaches to the study of sound. Sensors of many different kinds are available at low cost
and they can be organized into networks. Computing power is generously available even in
tiny and low-power processors that can be easily embedded into artefacts of different nature
and size. New design strategies that take advantage of these technological opportunities are
emerging: physical computing, natural interaction, calm technologies are some of the many
buzzwords that are being proposed as labels for these new trends in design. For the purpose of
sound-based communication, the concept of embodied interaction [Dourish, 2001] is particularly

4Parts of this section are extracted and modified from a recent work by Rocchesso and Bresin [2005]
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significant. Embodiment is considered a property of how actions are performed with or through
artefacts, thus embracing the position that treats meanings as inextricably present in the actions
between people, objects, and the environment. A key observation that emerges from embodied
interaction examples is that human interaction in the world is essentially continuous and it relies
on a complex network of continuous feedback signals. This is significantly important if one
considers that most interfaces to technological artefacts that are currently being produced are
developed around switches, menus, buttons, and other discrete devices. The design of graphical
user interfaces has been largely inspired by ecological psychology and concepts such as direct
perception and affordances [Gibson, 1979]. When designing embodied interfaces, we call for
a reconciliation of ecological psychology and phenomenology that looks, with equal emphasis,
at the objects and at the experiences. By means of physical modeling we can represent and
understand the objects. By direct observation we can tell what are the relevant phenomena,
which physical components are crucial for perception, what degree of simplification can be
perceptually tolerated when modeling the physical reality. Specifically, sound designers are
shifting their attention from sound objects to sounding objects, in some way getting back to
the sources of acoustic vibrations, in a sort of ideal continuity with the experimenters of the
early twentieth century, especially futurists such as Luigi Russolo and his intonarumori. In
the contemporary world, sounding objects should be defined as sounds in action, intimately
attached to artefacts, and dynamically responsive to continuous manipulations. As opposed to
this embodied notion of sound, consider an instrument that came shortly after the intonarumori,
the theremin invented 1919 by Lev Termen. It is played by moving the hands in space, near two
antennae controlling amplitude and frequency of an oscillator. Its sound is ethereal and seems
to come from the outer space. This is probably why it has been chosen in the soundtracks of
some science-fiction movies [see the documentary by Martin, 2001]. Even though relying on
continuous control and display, the lack of physical contact may still qualify the theremin as a
schizophonic artefact, and it is not by coincidence that it is the only musical instrument invented
in the twentieth century (the schizophonic age) that was used by several composers and virtuosi.
Indeed, nephews of the theremin can be found in several recent works of art and technology
making use of sophisticated sensors and displays, where physical causality is not mediated by
physical objects, and the resulting interaction is pervaded by a sense of disembodiment.
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Sound and motion

Sounds are intimately related to motion, as they are usually the result of actions, such as body
gestures (e.g. the singing voice) or mechanical movements (e.g. the sound of train wheels
on rails). In the same way as we are very accurate in recognizing the animate character of
visual motion only from a few light points corresponding to the head and the major limb-joints
of a moving person [Johansson, 1973], we are very sensitive to the fluctuations of auditory
events in the time-frequency plane, so that we can easily discriminate walking from running
[Bresin and Dahl, 2003] or even successfully guess gender of a person walking [Li et al., 1991].
It is not a surprise that gestures are so tightly related with sound and music communication. A
paradigmatic case is that of the singing voice, which is directly produced by body movements (see
also Chapters 5.3 and 5.4 for overviews on gestures in music performance). In general, gestures
allow expressive control in sound production. Another example is DJ scratching, where complex
gestures on the vinyl and on the cross-fader are used for achieving expressive transformation
of prerecorded sounds [Hansen and Bresin, 2003]. In the context of embodied interfaces, where
manipulation is mostly continuous, it is therefore important to build a gesture interpretation
layer, capable to extract the expressive content of human continuous actions, such as those
occurring as preparatory movements for strokes [see Dahl, 2004]. Body movements preceding
the sound production give information about the intentions of the user, smother and slower
movements produce softer sounds, while faster and sudden movements are associated to louder
sounds. Gestures and their corresponding sounds usually occur in time sequences, and it is
their particular time organization that helps in classifying their nature. Indeed, if properly
organized in time, sound events can communicate a particular meaning. Let us consider the case
of walking sounds [Bresin and Giordano, submitted]. The sound of a step in isolation is difficult
to identify, while it gives the idea of walking if repeated a number of times. If the time sequence
is organized according to equations resembling biological motion, then walking sounds can be
perceived as more natural [Bresin and Dahl, 2003]. In addition, if sound level and timing are
varied, it is possible to communicate different emotional intentions with walking sounds. In
fact, the organization in time and sound level of structurally organized events, such as notes
in music performance or phonemes in speech, can be controlled for communicating different
emotional expressions. For instance in hyper- and hypoarticulated speech [Lindblom, 1990] and
in enhanced performance of musical structure [Bresin and Friberg, 2000a] the listener recognizes
the meaning being conveyed as well as the expressive intention on top of it. Research results
show that not only we are able to recognize different emotional intentions used by musicians or
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speakers [Juslin and Laukka, 2003] but also we feel these emotions. It has been demonstrated
by psychophysical experiments that people listening to music evoking emotions experience a
change in biophysical cues (such as blood pressure, etc.) that correspond to the feeling of that
specific emotion and not only to the recognition. Krumhansl [1997] observed that sad music
produced largest changes in heart rate, blood pressure, skin conductance and temperature, while
happy music produced largest changes in measures of respiration. Music and sound in general
have therefore the power to effect the variation of many physiological parameters in our body.
These results could be taken into account in the design of more engaging applications where
sound plays an active role.

Sound and interaction

Important role in any controlling action is played by the feedback received by the user, which
in our case is the sound resulting from the user’s gestures on an object or a musical instrument.
Therefore sound carries information about the user’s actions. If we extend this concept and
consider sounds produced by any object in the environment we can say that sound is a multidi-
mensional information carrier and as such can be used by humans for controlling their actions
and reactions relative the environmental situation. In particular, humans are able to extract size,
shape, material, distance, speed, and emotional expression from sonic information. These capa-
bilities can be exploited to use sound as a powerful channel of communication for displaying
complex data. Interactive sonification5 is a new emerging field where sound feedback is used in
a variety of applications including sport, medicine, manufacturing, and computer games. There
are many issues that have been raised in such applications, and answers are expected to come
from interaction design, perception, aesthetics, and sound modeling. For instance, how do we
achieve pleasant and effective navigation, browsing, or sorting of large amount of data with
sounds? In the framework of the Sounding Object project , the concept of sound cartoonification
has been embraced in its wider sense and applied to the construction of engaging everyday sound
models. Simplified and exaggerated models have been proved to be efficient in communicating
the properties of objects in actions, thus being excellent vehicles for informative feedback in
human-artefact communication. For instance, it has been shown that temporal control of sound
events helps in communicating the nature of the sound source (e.g. a footstep) and the action
that is being performed (walking/running). The possibility of using continuous interaction with
sounding objects allows for expressive control of the sound production and, as a result, to higher

5See [Hunt and Hermann, 2005] for a recent overview of the field
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engagement, deeper sense of presence, and experiential satisfaction. Low-cost sensors and recent
studies in artificial emotions enable new forms of interaction using previously under-exploited
human abilities and sensibilities. For instance, a cheap webcam is sufficient to capture expressive
gesture nuances that, if appropriately interpreted, can be converted into non-visual emotional
cues. These new systems, albeit inexpensive and simple in their components, provide new
challenges to the designer who is called to handle a palette of technologies spanning diverse
interaction modalities. In the future, the field of interaction design is expected to provide some
guidelines and evaluation methods that will be applicable to artefacts and experiences in all their
facets. It is likely that the classic methods of human-computer interaction will be expanded with
both fine-grained and coarse-grained analysis methods. On a small scale, it is often necessary to
consider detailed trajectories of physical variables in order to make sense of different strategies
used with different interaction modalities. On a large scale, it is necessary to measure and analyze
the global aesthetic quality of experiences.

Examples

Examples In the next four Sections we present state-of-the-art applications that can be grouped
into two classes of sound control. Paraphrasing the S2S2 Coordinating Action name, the one class,
focusing on the control of musical instruments, represents applications that control the sense of
sound production; the other class, focusing on the control of sounding objects, is characterized
by applications that control sounds that make sense. The chapters sequence can also be seen
as ordered after increasing abstraction of sound models (from sampled sounds to cartoonized
sounds) and decreasing complexity of gesture control (from DJ scratching to simple sliding).

Control of musical instruments As far as continuous control is concerned, sampled sounds
offer limited possibilities, unless a very complicated control is constructed, as it is found in
sample-based musical keyboards. A successful example of such control is DJ scratching. In
the next Section 5.5.2, Hansen and Bresin present a program for the simulation of typical DJ
scratching gestures. This interface allows the novice musician to emulate DJs’ sound ”molding”
techniques. This can be achieved by using gesture controllers instead of the traditional turntable,
mixer and vinyl record set-up.

In the nineties it became clear that interfaces need sound models, i.e. audio synthesis
procedures whose parameters humans can make sense. These are sound models that can directly



5.5. Controlling sound production 185

react to gestures. Section 5.5.3 is dedicated to a brief presentation of the Virtual Air Guitar (VAG)
developed at the Helsinki Technical University by Matti Karjalainen and co-workers. It is a
model for the control of guitar playing without a guitar. The sound model used is a physics-
based one and it is control with the player’s hands using a variety of devices such as web camera,
and gesture sensor. Both Skipproof and VAG enable non-expert musicians to control virtual
versions of real instruments. These interfaces enhance the expressive possibilities for non-expert
musicians and yet allow the idiosyncrasies of a real instrument in ways that could appeal to
professional musicians. The interfaces accomplish this by enabling the same or similar gesture
controls both directly and at a higher level, i.e. by simulating them.

Control of sounding objects Research on the control of acoustic musical instrument offers
insights for the design of new interaction models. In particular, in models making use of
multisensory embodied interaction, sounds should be embedded in the artefacts and controlled
by continuous interaction, such as in violin playing. In some cases the actual sound diffusion
could be displaced elsewhere, but the tight coupling between gestures on the artefacts and sound
models should give the illusion of embodied sounds. Two Sections are dedicated to interfaces
manipulating sounding objects using typical everyday gesture interaction such as grasping,
pulling, pushing, scratching, and hitting.

In Section 5.5.4, Sergi Jordà and co-workers present the reacTable*, a musical instrument
based on a tabletop tangible user interface that allows cooperative and distributed multi-user
music performance and composition. This instrument can be played by manipulating a set of
objects that are distributed on top of a table surface.

In Section 5.5.5 Amalia de Götzen and Davide Rocchesso give an overview of book inter-
faces focusing on future developments of children books. This class of books, with their typical
interactive gesture interface based on tabs and flaps that can be pulled and lifted, is ideal for the
design of innovative applications associating sounds to interaction and therefore enhancing both
narrative of the story and immersion of the reader.

5.5.2 DJ scratching with Skipproof

Scratching is a very popular way of making music with a turntable and a mixer. It is considered
to be one of various DJ playing styles. Scratching and the lesser known, related playing style
beat juggling both require much training for mastering complex gesture control of turntable and
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mixer.

Skipproof, a patch written for Pd [Puckette, 1996], is both a virtual turntable and audio
mixer, and an application for playing synthesized scratch techniques. The main purpose is to
“scratch” sound files using gesture controllers of different kinds. Skipproof has been used by a
DJ in two live concert situations, using a number of sensors.

Overview and background

Scratch performances are normally built up by the sequential executions of well-defined hand
movements. Combinations of a gesture with the hand controlling the record and a gesture
with the hand controlling the crossfader on the mixer are called scratch techniques. These have
become common language for DJs, and they refer to them by name (baby, crab, flare) or by its
characteristics (1-click flare, 2-click flare, reversed tear). About 100 techniques were recognized
and more than 20 analysed in previous studies [e.g. Hansen, 2002, Hansen and Bresin, 2003].
The measurements focussed on the movement of the record and the crossfader, and based on the
analysis, models with synthesized scratch techniques were collected.

Originally the software was intended to be a tool for reproducing and exploring the
modelled scratch techniques with different characteristics. For instance we could change speed
and extent of the record movements. The graphical user interface allows for easy experimenting
with the models. We decided to develop the patch so it could be used also for controlling sound
files in a turntable-like manner. In the end Skipproof was combining features from turntable,
audio mixer and scratch vinyl records.

State of the art in scratch tools There is an increasing market for turntable-like interfaces used
with digital music players such as CD and MP3 players, and for controlling music files on a
computer. Many DJs nowadays feel comfortable with these interfaces and prefer CDs or MP3s to
vinyl. This is not yet the case for scratch DJs, who still mainly perform with an ordinary turntable
and mixer.

Even though learning to scratch properly is very demanding, no commercial products
aims to help the aspiring DJ with easier ways to play the instrument. Only the crossfader has
been experimented with to some degree (Samurai mixers from Vestax [Hansen, 2002]) making it
easy to perform several crossfader clicks with only one simple gesture. On ordinary turntables
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the pitch (speed change) has been extended from ± 8% to ± 100%, and with options to reverse
the motor in order to play backwards.

A disadvantage of having record players and a mixer for scratching is the large size.
Following a design idea by the world’s leading scratch artist, DJ Q-Bert, Vestax has manufactured
the first turntable with a built-in crossfader, the QFO. This small, round turntable represents a
significant step towards a self-contained musical instrument for scratching.

One of very few attempts at improving the turntable as controller is a haptic force feedback
turntable called D’Groove, developed by Beamish et al. [2004]. D’Groove controls a computer
sound file like other systems, but has a motor that guides the DJ with various haptic feedback
(like modern joysticks in a computer game). It can for instance re-create what kind of music is
currently playing by mapping motor strength to intensity in the sound file6, or mark each beat
in the music with a bump in the vinyl. This can be highly useful in localizing the right spot
on the album, and for beat juggling and mixing. Test results from D’Groove show that scratch
DJs are eager to modify and experiment with their techniques to take full advantage of the new
possibilities.

Skipproof’s features

With Skipproof the user can play sound files with a virtual turntable and mixer, and apply models
of scratch techniques. The most important feature is to be able to control the execution of the
models (to play techniques with varying gestures). Another feature is easy customization of
gesture controllers and sensors for operating the virtual turntable, mixer and techniques.

The graphical user interface (GUI), made with GrIPD [Sarlo, 2003], serves as a collection
of controllers a DJ normally would expect to find. Skipproof’s GrIPD window contains (see Fig.
5.11):

an area for scratching with the mouse

volume slider (simulating master/channel volume)

switch for muting the sound (simulating crossfader break-in point or channel select)7

6 For a relatively short, isolated sound it will feel like pushing the record uphill as the resistance grows with the
tone attack, and downhill in the decay.

7 The crossfader normally has a very short span from silent to full sound. Break-in point is the place where sound
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progress bar for showing position in the sound

a selection of samples to play with (simulating moving the needle)

slider for changing the effect of a movement (similar to having hand positions on the vinyl
towards the edge or towards the middle)

pitch (tempo) change

on/off button for turntable

Figure 5.11: Skipproof GUI.

Some functions are not found in the real turntable and mixer, such as:

graphical representation of the sound file

triggers for modelled techniques

sound effects (reverberation, delay etc.)

is turned on, often a span of not more than a millimeter. It is more realistic to consider the crossfader as a switch
than a fader. The channel selector is used as such switch.
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slider for adjusting turntable motor strength

slider for adjusting friction between vinyl and platter

Some functions are not found in the model, but in the real turntable and mixer, such as:

equalizer/tone control

crossfader (changing between two sound sources)

two turntables, allowing to do beat juggling

Some of the sound effects implemented control frequency filters and stereo panning, much like
the equalizer and panning knobs on a regular mixer.

All sound samples that are used with the patch are 1.6 seconds long, equivalent to one
rotation with 331/3 RPM (rounds per minute) on a vinyl record. This is reflecting the idea of a
skip proof record8. The sounds are taken from a DJ tool record and are all common to perform
scratching with.

Implementation of synthesized techniques There are 12 different scratch techniques ready to
use in the patch. Each of these are models based on analysis of recordings made by a professional
DJ, see Hansen [2002] for an overview. The typical scratch technique consists of a forward–
backward movement of the record and one or more synchronized “clicks” with the crossfader.
All the implemented techniques start and stop at the same position on the virtual record, with
the exceptions of a slow forward motion and a silent backward motion.

To change the way a technique is performed depends on the controller. In most cases large
gestures will make longer scratch movements than small gestures would within the same time
span. As a result pitch will be higher. Even the speed is typically determined by the gesture as
a sudden gesture will trigger a fast scratch and a slow gesture a slow scratch. These mappings
may be changed in any way, and when using several controllers, it is possible to have many-to-
many, one-to-many and many-to-one mappings [Hunt and Kirk, 2000]. For instance, with three

8 The name Skipproof is taken from a feature found on DJ-tools records called a skip proof section, where a sound
(or set of sounds) are exactly one rotation long and repeated for a couple of minutes. If the needle should happen to
jump during a performance, the chances are quite good it will land on the same spot on the sound, but in a different
groove.
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accelerometer

))
++speed extent

flexion sensor

(( ++sample sound sound effect

RadioBaton x/y position

((

33

position in sound file

Figure 5.12: Possible mappings between three gesture sensors and five Skipproof parameters.

sensors and five actions, the mapping could look as in Figure 5.12, which shows the one-to-many
mappings with all three gesture sensors and a many-to-one mapping to the sound effect action.
For the set-ups described in the following section, one sensor often only controlled one action.

In the first version of Skipproof the techniques can be altered in extent and speed of the
movement, the two most important parameters in scratching [Hansen and Bresin, 2003]. Both
extent and speed can be exaggerated in the sense that scratch techniques can be performed faster
and with larger movements than on a real turntable. Even slow and small movements can be
exaggerated, but with a less interesting effect.

Controlling the patch

All the elements in the GUI can be controlled by either computer hardware, MIDI instruments
or other sensors. An interface for mapping sensors to actions was developed, and it is also easy
to calibrate sensors using this interface. It is possible to customize keyboard and mouse events
to the actions. Until now Skipproof has been played by a number of devices:

Traditional input device (including mouse, keyboard, joystick, touch pad and tablet)

MIDI devices such as keyboard, sliders and knobs
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Max Mathews’ RadioBaton ([Boulanger and Mathews, 1997])

Pico D/A converter with custom sensors (including light sensor, potentiometers, buttons)

LaKitchen’s Kroonde and Toaster sensor interfaces (including pressure sensor, magnetic
field sensor, accelerometers, flexion sensor)

Of these controllers, the RadioBaton in combination with sliders, buttons, magnetic field, flexion
and light sensors has proven to be most successful. Even a computer mouse in combination with
other sensors can be quite effective.

Skipproof used in concerts A professional DJ has been using Skipproof in two live concert
situations, see Fig. 5.13. First time it was with RadioBaton controlling the turntable and technique
models, and some foot switches for other tasks. Sound level was controlled with the crossfader
on a standard audio mixer. The RadioBaton sticks were replaced with treated gloves, so the
musician could control the turntable speed and the techniques easily, moving his hand in a
3-D space over the antennae. The technique models were triggered with a foot switch, and the
hand placement over the antennae determined how they were played.

In a second concert the DJ used again the RadioBaton, but now he could trigger the models
more directly based on the gesture. The approach toward a defined area of the antennae was
measured in speed and distance, and this gesture determined scratch speed and extent. For this
performance a light switch was used to replace the crossfader. A light sensor was placed pointing
directly toward a lamp, and the DJ could break the light beam by placing his hand close to the
sensor, or by waving an open hand as a comb. In that way, controlled and rapid sound on–off
events was possible, just like with a crossfader.

Feedback from the DJ and test persons The DJ that performed with the RadioBaton commented
that although there was a lack of mechanical feedback from the interface, it opened up to new
possibilities. Controlling recorded techniques was considered to be hard, especially to get the
correct tempo. A scratch DJ uses physical markings on the vinyl (stickers, label) to see where in a
sound the pick-up is, and this feature is moved from the controller to the GUI in Skipproof. This
takes time getting comfortable with and is not at all optimal.

Persons without DJ experience have found the set-up with RadioBaton as turntable and
light switch as crossfader to be intuitive and exciting, and quite fast they could perform with it
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Figure 5.13: DJ 1210 Jazz scratching with Skipproof in a concert. The RadioBaton is operated
with his right hand. Beside the computer screen is the lamp for the light sensor, on the floor is a
rack of foot switches. His left hand is on the crossfader.

in a simple fashion.

Conclusions

It is realizable to build a system that enhances DJ performances of scratching, and it is desirable
to experiment with the equipment currently preferred by DJs. Performing with models of scratch
techniques is still a novel approach that needs to be tested more.

Commercial products are currently striving towards giving accurate control of digital
sound files by means of turntable-like devices. Evolution of the crossfader is mostly focussed on
the mechanical perspectives such as what kind of fader is used (optical, magnetic etc.).

DJs seem overall to be interested and intrigued by new technology and possibilities.
Different playing styles demand different controllers and instruments, therefore the tools for
mixing, scratching and beat juggling might become more specialized in the future.
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5.5.3 Virtual air guitar

A combination of hand-held controllers and a guitar synthesizer with audio effects is called
here the ”Virtual Air Guitar” (VAG). The name refers to playing an ”air guitar”, i.e., just acting
the playing with music playback, and the term virtual refers to making a playable synthetic
instrument. Sensing of the distance of hands is used for pitch control, the right hand movements
for plucking, and the finger positions may in some cases be used for other features of sound
production. The synthetic guitar algorithm supports electric guitar sounds, augmented with
sound effects and intelligent mapping from playing gestures to synthesis parameters. This
section describes the main principles of the instrument, particularly its control and how it is
played.

Introduction

Electronic and computer-based musical instruments are typically developed to be played from
keyboard, possibly augmented by foot, breath or other controllers. In the present study we have
explored the possibility to make an intuitive yet simple user interface for playing a particular vir-
tual (synthetic) instrument, the electric guitar. In addition to the synthetic instrument and related
audio effects (amplifier distortion and loudspeaker cabinet simulation) we have explored three
different controllers for player interface: data gloves in a virtual room environment, webcam-
based camera tracking of player’s hands, and special hand-held controller sticks. The first one
(data glove control) is for flexible experimentation of possible control features, while the two
others are intended for maximally simplified guitar playing, designed for wide audience visiting
a science center exhibition.

The main effort has been to study how the hand positions and movements can be mapped
to control typical playing of the electric guitar. The two most important parameters needed are
the pitch control ’ (corresponding to fretting position) and the string plucking action. In all three
cases of controller design the pitch-related information is taken by measuring the distance of
the two hands, which was found easier to use than the distance of left hand to a reference such
as the players body. This distance information can be mapped also to other forms of control,
such as selecting pre-programmed chords to be played. The string plucking action is most easily
captured by the downward stroke of the right hand.

This means a highly simplified user interface, which sets strict limits to what can be played
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Figure 5.14: Basic structure of the single-delay loop filter and excitation mechanism for imple-
menting the Extended Karplus-Strong string model.

by such a virtual guitar, certainly not satisfactory for a professional guitarist. It is, however, an
interesting case of studying what can be done to demonstrate the basic features of playing a
particular instrument with a given style, or to make inexpensive ‘toy’ instruments for fun. This
can then be augmented by extra functions in more complex controllers, for example using finger
movements, foot pedals, etc. In such cases the challenge is to find expressive and intuitive forms
of controls that may be useful also for professional musicians. Another way, to get rich sound
from minimalistic controllers, is to use complex rule-based mappings from simple control signals
to more advanced control signals for playing a virtual instrument.

In this section we present an overview of the virtual air guitar design, paying most attention
to the user interface aspects from the players point of view. A more detailed description9 is
found for example in Karjalainen et al. [2004]. Publications on physics-based modeling and
control of the synthetic guitar have been described earlier for example in Jaffe and Smith [1983],
Sullivan [1990], Karjalainen and Laine [1991], Jánosy et al. [1994], Karjalainen et al. [1998], and
Mäki-Patola et al. [2005].

Synthesizing the electric guitar

The virtual instrument used in this study is a simulation of an electric guitar tuned to sound
like the Fender Stratocaster. In this section we briefly characterize the development of the guitar
model and of the sound effects used with it.

9Web documents on the project, including videos of playing the VAG, are available at:
http://www.tml.hut.fi/∼tmakipat/airguitar/virtualAirGuitar.html, and http://www.acoustics.hut.fi/demos/VAG/

http://www.tml.hut.fi/~tmakipat/airguitar/virtualAirGuitar.html
http://www.acoustics.hut.fi/demos/VAG/
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Virtual Stratocaster The virtual electric guitar is realized using the Extended Karplus-Strong
modeling technique described in Karjalainen et al. [1998] for the acoustic guitar except that the
electric guitar does not need a body but instead a magnetic pickup. Figure 5.14 depicts the
principle of a single string simulation as a signal processing diagram. An excitation wavetable
signal is fed through spectral shaping (timbre control) to the string model, which consists of a
pluck position filter and a string loop filter. This loop includes a delay to adjust the pitch and a
loop filter to adjust the decay of vibration corresponding to string losses. The integrator converts
the signal to string velocity. The magnetic pickup model is not shown, but it is similar to the
pluck position filter.

Two such substring models need to be used in parallel to simulate the two polarizations
of string vibration and possible beating in signal envelope due to the difference of string length
in these two polarizations. Six such strings are needed for a full guitar model.

The string models need to be calibrated to yield sounds that are close to the original electric
guitar sound. This is accomplished in the following way. Each string is plucked sharply very
close to the bridge for the first and the 12th fret fingering, and the resulted signal is analyzed.
The decay rate at each harmonic frequency is used to design the loop filter parameters for the
two fingering positions. These parameters are then interpolated linearly for other fingering
positions. The loop delay is also tuned as a function of fret position to get correct pitch. The two
polarizations are tuned to have slightly different delays in order to obtain minor beating in string
sound envelope for increased naturalness. The magnetic pickup filter (not shown) is designed
to include a lowpass filter around 8 kHz to match with the recorded signals. Figure 5.15 shows
a real measured spectrum and the corresponding modeled signal spectrum for string 1, fret 1,
using bridge pickup, and when plucked 1 cm from the bridge.

Simulation of tube amplifier and loudspeaker Electric guitar players prefer to play through a
tube amplifier that adds more or less distortion to the sound. A loudspeaker cabinet also adds
distortion and shapes the signal spectrum. The distortion makes the spectrum richer, and for
solo playing and simple chords the distortion is often preferred perceptually when compared to
clean electric sound.

For our virtual electric guitar the preamplifier stages of a tube amplifier and loudspeaker
cabinet were simulated digitally. Figure 5.16(a) presents a tube amplifier simulator as a signal
processing diagram. In addition to lowpass (LPF), highpass (HPF), and delay (z−1) blocks, the
most essential part is a nonlinear block (Ftube) to simulate the triode tube stage characteristics,
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Figure 5.15: Comparison of (a) measured and (b) modeled spectrum response for string 1, fret
1, bridge pickup, plucked 1 cm from the bridge. The model is excited by an impulse. X-axis is
frequency in Hz. Y-axis is level in dB.

which makes the distortion.

Figure 5.16(b) plots the frequency response of a loudspeaker cabinet simulator imple-
mented simply as an FIR filter that has some ripple in the response and cuts high frequencies
beyond 5 kHz. No nonlinearities of the speaker are simulated.

Controllers and user interfacing

The playability of a real electric guitar is based on right hand plucking/picking by a plectrum or
by fingers and left hand fingering of strings at frets or letting strings to vibrate open. Each hand
can be used to damp string vibration by touching as a soft termination. In slide guitar playing
the effective string length is varied by terminating the string by a relatively hard object that can
slide on the string.

A synthetic electric guitar can be played using any controllers that properly support
the main control features of the instrument. As mentioned above, pitch and plucking are the
minimum requirements, while many other controls are needed in professional playing. In this
section we discuss three alternatives that have been used in our experimental VAG designs. Two
of them were designed for a science centre exhibition, which required them to run without too
special hardware, to be easy to grasp, and hard to break. Rule-based mappings from the physical
parameters to instrument control parameters are also discussed.
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Figure 5.16: (a) Digital model of the tube amplifier stage and (b) Frequency response of Celestion
Vintage 30 speaker in 4x12” cabinet.

Data gloves Data gloves with 3-D tracking of hand positions as well as finger flexure parameters
are used in a virtual room environment for experimentation of virtual guitar playing as shown in
Figure 5.17. The distance between hands is measured for pitch control, right hand down-stroke
makes the plucking, and finger information can be used for other effects, such as switching
between continuous sliding of pitch or holding the pitch sampled during a pluck until the
next pluck. In the latter case the pitch can be quantized to discrete fretted pitches. Among
other parameters that can make playing expressive are string damping for long or short sustain,
selection of string or chords, or controlling different audio effects such as distortion, echo, and
reverberation.

So far we have applied the data glove control primarily to simple control strategies, because
the studies have been targeted to the design and use of the simpler interfaces described below.
The disadvantage of using data gloves is that they are expensive if constructed for accurate
tracking. Thus they are useful primarily for research purposes.

Control sticks A version of user interface for the VAG has been developed that supports pitch
and pluck control variables using special hand-held devices. Figure 5.18 illustrates a prototype
version of such control sticks.

The pitch information to control the string length is measured as the distance of a sound
transmitter and receiver in the sticks. The right-hand stick includes a tiny loudspeaker that sends
high-frequency pulses and the left-hand stick has an electret microphone to receive the pulses.
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Figure 5.17: Soulful playing of a VAG in a virtual room using data gloves.

The acoustic delay of the pulses due to sound propagation is converted to string length control.
The frequency range of the transmitted pulses is around 20 kHz so that standard audio interfaces
with sampling rate of 44.1 kHz can be applied, yet the pulses are not audible by the user due to
insensitivity of the human ear at those frequencies.

The plucking information is captured by an acceleration sensor microchip inside the right-
hand stick. The acceleration pulse triggers a transient signal (noise burst), proportional in
amplitude to the acceleration peak value. This signal is fed to the string model(s) as an excitation
to start a sound.

In addition to the hand-held sticks, a foot pedal can be used to control the sustain time or
some audio effects, such as a wah-wah effect.

The electric guitar model of this case is controlled typically so that a pluck triggers two
strings tuned to the interval of fifth, corresponding to what guitar players call the “power
chord”. When played through a tube amplifier distortion simulator, the VAG makes sounds that
are typical in blues and hard rock music.
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Figure 5.18: Control sticks for playing the VAG. Right-hand stick (on the left) includes an
acceleration sensor as well as a small loudspeaker to send the distance measurement pulse.
Left-hand stick (on the right) receives the pulse by an electret microphone.

Hand-tracking by a webcam camera A camera interface, being non-obstructive, gives the
performer freedom to move intensely without worrying about breaking the controller or tying
wires. By these properties it is the perfect interface for an intensive playing experience, especially
for a science centre exhibition where tens of thousands of people, many of them children, will
play the instrument.

Our camera interface for the guitar, see Figure 5.19, uses a common webcam camera for
tracking the user. The user wears orange gardening gloves, the locations of which are extracted
by finding the two largest blobs of orange color from the camera frames. This location data is
then fed into a gesture extractor to detect when certain playing gestures take place.

A pluck is detected when the right hand passes through the imaginary guitar centerline.
The guitar moves with the player and allows him to play even near the feet of behind the neck.
Yet, as the location of the right hand is smoothed (lowpass filtered) for the centerline, the guitar
does not shake along with the plucks.

The distance between the hands is transferred into fretting positions. The maximum width
of the user’s grip calibrates the ”size” of the guitar. Thus, it can be played equally well by adults
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Figure 5.19: Camera tracking of hand positions (orange gloves), as seen by the computer.

and children. In addition to these basic controls a vibrato can be switched on by shaking the
left hand along the imaginary guitar neck. Moving the hand more continuously along the neck
translates into a fret-based slide. It is also possible to mute the strings by occluding one of the
hands, for instance, behind one’s back. The webcam interface also contains a foot pedal for
changing between different playing modes.

Musical intelligence Instead of attempting to replicate every aspect of a real guitar, the Virtual
Air Guitar’s interface can use a complex mapping system to produce the sounds of guitar playing.
The result is an entertainment device that is more in line with the way of playing air guitar -
with showmanship, intensity and fun. In the webcam interface, the user is presented with two
playing modes: rhythm guitar and solo guitar.

The rhythm guitar mode allows the user to strum four different power chords. These
produce a heavy, thick sound, allowing the user to play “riffs”, or rhythmic passages. Using
these four chords, it is also possible to play the introduction to the song “Smoke on the Water”
by Deep Purple, a well-known piece that is often used for air guitar playing.

The solo mode, on the other hand, allows the user to freely play a guitar solo on a pentatonic
minor scale, with additional techniques such as fret sliding and vibrato. This mode also takes
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into account the intensity of playing, producing satisfying distortion when the user plays very
fast and hard.

To achieve this control, the mapping from gesture to sound model contains rules and
procedures called the musical intelligence. The user’s gestures are first interpreted into a meta
language that describes guitar playing techniques on an abstract, musical level. For example,
moving the right hand over the imaginary guitar strings in a strumming motion is interpreted as
a pluck event. These events are in turn converted into control parameters for the sound model.
The musical intelligence thus contains both the rules by which gestures are converted into these
musical events, and the implementations of the events for a certain sound model.

Summary and conclusion

In this section we have described experiments on a playable virtual instrument called Virtual Air
Guitar (VAG). It consists of hand-held controllers and a guitar synthesizer with sound effects.
Three different user interfaces for controlling the instrument are experimented: data gloves
used in a virtual room, optical tracking of hand movements, and special control sticks using
acoustic and acceleration sensing of hand movements. The control parameters are mapped
to synthesis control parameters in various ways: from direct control of pitch and plucking to
artificial intelligence based advanced control.

The VAG is a good example of a virtual instrument that requires special controllers and
playing strategies, different from keyboard oriented control. The simple versions described above
are intended for toy-like applications, such as games, or instructional devices to characterize the
most essential features of plucked string instrument playing.

Among future challenges are studies on more expressive control interfaces, which could
be useful also by professional musicians. In contrary to real guitar playing, there is much more
freedom to apply different gesture parameters for virtual instrument control.

5.5.4 The reacTable*

10The reacTable* is a state-of-the-art interactive music instrument, which seeks to be collabo-
rative (local and remote), intuitive (zero manual, zero instructions), sonically challenging and

10This Section is a longer version of a paper published by same the authors [Jordà et al., 2005]
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interesting, learnable and masterable [Wessel and Wright, 2002], suitable for complete novices
(in installations) and for advanced electronic musicians (in concerts) and completely controllable
(no random, no hidden presets). The reac-Table* uses no mouse, no keyboard, no cables, no
wearables. In other words, the technology it involves is transparent to the user. It allows a flex-
ible number of users, and these can enter or leave the instrument-installation without previous
announcements.

Antecedents

FMOL and Visual feedback The reacTable* can be considered the successor of FMOL, a pre-
vious project developed by Jordà [Jordà, 1999, Jordà and Wüst, 2001, Jordà, 2002]. FMOL is a
sonigraphical musical instrument [Jordà and Wüst, 2003] that has been used by hundreds of per-
formers, be tween 1998 and 2002 in several on-line collective composition calls, and which is still
used by the author in live performance and improvisational contexts. One of the main features of
FMOL is its visual feedback capacity, which intuitively helps the understanding and the mastery
of the interface, enabling the simultaneous control of a high number of parameters that could not
be possible without this visual feedback. Like the abacus, in which beads, rods, and frame serve
as manipulable physical representations of numerical values and operations [Ullmer and Ishii,
2001], FMOL makes no conceptual distinction between input and output. In FMOL, the men-
tal model suggested by the interface reflects the synthesis engine conceptual model, while the
resulting geometric “dance” of all of these elements, tightly reflects the temporal activity and
intensity of the piece and gives multidimensional cues to the player. Looking at a screen like
figure 5.21, which is taken from a quite dense FMOL fragment, the player can intuitively see the
loudness, the dominating frequencies and the timbrical content of every channel, the amount of
different applied effects, and the activity of more than thirty LFOs.

What is even more important, is that no indirection is needed to modify any of these
parameters, since anything in the screen behaves simultaneously as an output and as an input.
However, FMOL drags a very severe limitation: FMOL still is a conventional GUI Model-View-
Controller application. There are limits to what can be efficiently achieved in real-time by means
of a mouse and a computer keyboard. Building a tangible FMOL interface for a faster and
more precise multi-parametric control seemed therefore a tempting idea. Designing a video
detection or ultrasound system that would allow musicians to interact on a big projection screen,
grabbing and moving strings with their hands, was the first idea we had. This could surely
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Figure 5.20: The reacTable*

add a lot of visual impact to live concerts, although we soon discovered that musical control
and performance did not improve but rather worsen with these additional technologies. These
and other considerations took us to a completely new path, which should profit the knowledge
gained during this years and bring it to a much more ambitious project: The reacTable*, first
though as a new tangible controller for the FMOL synthesizer, finally evolved into a completely
new instrument.

Tangible User Interfaces As the Tangible Media Group11 directed by Professor Hiroshi Ishii at
the MIT Media Lab states, people have developed sophisticated skills for sensing and manipu-
lating our physical environments. However, most of these skills are not employed by traditional
GUI. The goal is to change the painted bits of GUIs to tangible bits, taking advantage of the
richness of multimodal human senses and skills developed through our lifetime of interaction
with the physical world.[Fitzmaurice et al., 1995, Ishii and Ullmer, 1997, Ullmer and Ishii, 2001].
Several tangible systems have been constructed based on this philosophy. Some for musical
applications, like SmallFish12, the Jam-O-Drum [Blaine and Perkis, 2000, Blaine and Forlines,

11Tangible Media Group: http://tangible.media.mit.edu
12SmallFish: http://hosting.zkm.de/wmuench/small fish

http://tangible.media.mit.edu
http://hosting.zkm.de/wmuench/small_fish
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Figure 5.21: FMOL in full action

2002], the Musical Trinkets [Paradiso and Hsiao, 2000], Augmented Groove13 or the Audiopad14

[Patten et al., 2002], but we believe that no one attempts the level of integration, power and
flexibility we propose: a table-based collaborative music instrument that uses computer vision
and tangible user interface technologies, within a Max-like architecture and scheduler, and with
FMOL-inspired HCI models and visual feedback.

Conception and design

Everything is possible The first step is to believe everything is feasible: we assume that we have
access to a universal sensor which provides all the necessary information about the instrument
and the player state, enabling the conception and design of the instrument without being driven
by technology constraints. The reacTable* is a musical instrument based on a round table with
a transparent surface, a video camera situated beneath the table continuously analyzes the table
surface, tracking the nature, position and orientation of the objects that are distributed on its
surface and the hand movements over the table. A projector draws a dynamic and interactive
interface on it, while a spatial audio system provides the actual sonic feedback. The objects are

13Augmented Groove: http://www.csl.sony.co.jp/∼poup/research/agroove/ [Poupyrev, 2000]
14Audiopad: http://tangible.media.mit.edu/projects/

http://www.csl.sony.co.jp/~poup/research/agroove/
http://tangible.media.mit.edu/projects/
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mostly passive , without any sensors or actuators and are made out various materials of different
shapes. Users interact with them by moving them, changing their orientation on the table or
changing their faces (in the case of volumetric objects). For future versions of the reacTable* we
are planning more complex objects such as flexible plastic tubes for continuous multi-parametric
control, little wooden dummy 1-octave keyboards, combs (for comb-filters), or other everyday
objects.

Modular synthesis and visual programming In the reacTable*, two additional concerns are no
less important than visual feedback and tangibility: modular synthesis and visual programming.
The concept of modular synthesis goes back to the first sound synthesizers, both in the digital
[Mathews, 1963, Mathews and Moore, 1969] as in the analog domains, with Robert Moog’s or
Donald Buchla’s Voltage-controlled synthesizers [Moog, 1965, Chadabe, 1975]. Modular syn-
thesis has largely proved its unlimited sound potential and can be considered indeed as the
starting point of all the visual programming environments for sound and music, which started
with Max in the late 1980s [Puckette, 1988], and have developed into Pd[Puckette, 1996], jMax
[Déchelle et al., 1999] or AudioMulch [Bencina, 1998], to mention a few. As shown by all of
these healthy environments, visual programming constitutes nowadays one of the more flexible
and widespread paradigms for interactive music making. The reacTable* is probably the first
system that seeks to incorporate all of these paradigms, in order to build a flexible, powerful and
intuitive new music instrument; a table-based instrument which can be played by manipulating
a set of objects that are distributed on top of the table surface.

Objects, connections and visual feedback The set of objects (as depicted in Figure 5.22), which
are made available on the table, can be manipulated by the players in various ways: once put
onto the table the objects are activated, the objects can be moved on the table surface - enabling
the objects to relate to each other. The rotation angle of the object is tracked as well. ReacTable*
objects are plain and passive, meaning that they do not come with any cables, switches buttons or
whatsoever. The user also does not have to wear any special sensor or controller equipment for the
object handling; the players plain hands are the only necessary controller. This of course, should
not rule out the possibility of “smart” objects that incorporate additional internal electronics
in order to retrieve some additional sensor data, coming from squeezing, bending or bouncing
them, like in the case of the Squeezables [Weinberg and Gan, 2001]. A rubber hose or a wooden
toy snake, whose state could be either determined by the computer vision or by using some



5.5. Controlling sound production 206

Figure 5.22: Several reacTable* objects (photography by Martin Kaltenbrunner)

bending sensors like in the Sonic Banana [Singer, 2003], can serve as an advanced controller
producing multi-dimensional control data. In any case, this would have to be achieved in a
completely transparent way, using wireless technology for example, so that the performer can
treat all objects in an equal way.

Each of these objects has its dedicated function for the generation, modification or control
of sound. Like Max and its cousins, the reacTable* distinguishes between control and sound
objects, and between control and sound connections. Bringing these objects into proximity
with each other constructs and plays the instrument at the same time. When a control flow is
established between two objects, a thick straight line is drawn between them, showing by means
of dynamic animations, the flux direction, its rate and its intensity. Audio flows, on their turn,
are represented like those in FMOL, by means of instantaneous waveforms.

Moreover, the reacTable* projection follows the objects on the table, wrapping them with
auras. An LFO, for example, will be wrapped by a blinking animation that will keep showing
the frequency, the amplitude and the shape (e.g. square vs. sinusoidal) of the oscillation. These
visualizations never shows text, buttons, sliders or widgets of any kind. What is shown at every
moment, is only the instrument activity and behaviour, the objects’ types and positions and the
relations between them all, in an abstract but direct and non-symbolic way. Figure 5.20 illustrates
this visual feedback.
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Figure 5.23: The first working reacTable* prototype

The hands play an important role: not only can they manipulate reacTable* objects, they
are treated as superobjects themselves. We also track the position and state of the hands in order
to retrieve additional control data. A simple gesture to illustrate this principle is the cut or muting
of a sound stream, which is done with a karate-style hand gesture. Another nice example are
the waveform and the envelopes objects, which can be simply programmed by finger-painting
respectively a waveform or an envelope close to them. This painted waveform is “absorbed”
by the object that starts playing it immediately. As already mentioned above, the hand can also
control the visual sound representation by cutting or redirecting the sound flow.

First informal tests indeed show that this visual feedback is actually crucial for the playa-
bility of the instrument. The central feature of this visual feedback is the visualization of the
sound and control flows between the processing objects, which are basically a representation of
the waveform state between two objects.

The reacTable* Architecture

Figure 5.23 shows the first prototype from 2003, which demonstrates the camera setup from
below. Figure 5.24 illustrates all the reacTable* system components. In this section we will
discuss each of them.
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Figure 5.24: The reacTable* architecture

Vision The reacTable* sensor component reacTIVision is an open source system for tracking
the type, location and orientation of visual markers in a real-time video stream. The system
was developed within the Music Technology Group by Ross Bencina [Bencina et al., submitted]
after we had developed an initial prototype using Costanza and Robinson’s d-touch system
[Costanza and Robinson, 2003] that is based on the recognition of similar fiducial markers. The
decision to develop a new tracking system stemmed primarily from the relatively low frame
rates achieved with d-touch, we sought to support high frame rates, while maintaining its
overall robustness and accuracy. Later, additional requirements emerged such as reducing the
dimensions of the fiducials and increasing the number of uniquely identifiable fiducials.

reacTIVision is a multi-platform standalone application, which sends the acquired sensor
data via TUIO [Kaltenbrunner et al., submitted] a protocol based on OpenSound control [Wright,
2003] to a client application. Objects have to be tagged with simple black and white markers,
with unique topologies to allow their distinction. The marker size usually depends on the camera
resolution and distance; we are currently working with markers of around 4 cm2. A vision engine
has to be sufficiently fast for the needs of an expressive musical instrument, thus providing a
high temporal resolution for the tracking of fast movements. The reacTIVision engine in our
current setup processes 60 frames at a resolution of 640x80 pixels in real-time on a 2GHz Athlon
system, and scales without any problems to higher frame rates or resolutions. We are using a
set of 128 unique marker symbols, although the amount of symbols can be easily extended up to
several thousands at the cost of slightly larger marker sizes.
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Connection manager: dynamic patching Provided the raw sensor data of the objects’ type,
position and orientation a central connection manager is calculating the actual patch network
similar to traditional visual programming languages. The resulting connections are then sent to
the actual sound and graphics synthesizer components.

Dynamic patching does not require the user to explicitly connect the objects. We defined
a simple set of rules, which automatically connect and disconnect objects. All objects have a
certain number of different in-output connectors: sound, control, sync etc. Based on a simple
distance rule, each object checks its neighborhood for objects, which can provide both compat-
ible and available ports. It will therefore always choose the closest available object to connect
to. The reacTable* connection paradigm produces a highly dynamic environment. Moving an
object around the table surface permanently interferes and alters existing connections, creating
extremely variable synthesizer morphologies. This behavior might be disturbing in certain con-
ditions; therefore we introduced an additional hard-link gesture, which establishes a permanent
link between objects that can’t be broken by the conventional rules. Other objects such as the
synchronizers emit a kind of pseudo-physical force fields around them, thus synchronizing only
objects, which are under their current influence. Again this connections are calculated based on
the relative positions of all objects and only the resulting connection or disconnection commands
are sent to the synthesizer.

Along with the actual patch network information the connection manager also sends a
series of raw control data values for each object. These values include distances and angles of
connected objects as well as their movement speed and acceleration values. It is decided within
the synthesizer component how to map this raw environment control data onto the synthesis
process. Please note that this data is retrieved directly from the table setup and is not related to
the control connections between synthesis objects.

Audio synthesizer Currently, the reacTable* objects can be generally categorized into seven
different functional groups: Generators (1 audio out and a varied number of control in), Audio
Filters (1 audio in, 1 audio out and a variable number of control in), Controllers (1 control out),
Control Filters (1 control in and 1 control out), Mixers (several audio in, 1 audio out), Clock
synchronizers and Containers. There are also some exceptions that do not fit within any of these
categories. Figure 5.25 shows a topology with three independent audio threads, as taken from
the reacTable* software simulator.

The synthesizer is controlled by the connection manager, which means that information
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Figure 5.25: A snapshot of the reacTable* software simulator

about which objects are on the table and what is connected is sent via Open Sound Control (OSC)
[Wright, 1997] to the synthesizer. The current implementation of the synthesizer uses the Pure
Data computer music system, but it is possible to write synthesis modules in any system that
supports OSC, as long as it is possible to implement the mapping logic and to instantiate, connect
and delete objects dynamically. Using a higher level synthesis language allows to easily adapt
and expand the audio synthesis by changing existing objects and adding new ones.

In order to avoid clicks, connections and disconnections of audio data are done with a
fadeout/fadein. The general set of OSC messages that are understood by the synthesizer module
are:

new/delete of objects (parameter is the name of an object class)

connect/disconnect between the different object ports.

activate/deactivate

messages for parameter passing, always referenced by a numerical ID.

several special messages (e.g additional info from hand gestures)
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The synthesizer also takes care of the mapping of parameters from the table. The imple-
mentation of the mapping on the synthesizer side allows for very flexible mapping algorithms
and presets.

A set of a dozen precomputed parameters, ranging from 0 to 1 is sent by the connection
manager. These parameters are position of the object in polar coordinates, angle of the object,
angle and distance to connected objects. The synthesizer engine can map these according to
object types. e.g. the angle of an oscillator influences the frequency, and the angle of the
oscillator regarding to the next object might influence the waveform. For a sample player, the
angle might influence the playback speed.

Visual synthesizer The visual feedback is implemented in another standalone application in a
similar way as the audio synthesizer, thus constituting a ”visual synthesizer”. The connection
manager sends the information about the objects’ connection state and their parameters to this
engine, which interprets this information in a straightforward way; It draws the objects at their
correct positions and draws lines for connecting them.

For the correct visualization of these connections, the graphics engine has an additional
connection to the audio synthesizer, from where it receives the information about the data flows
in the synthesizer. Audio connections are visualized by their waveforms in the time-domain and
are sent as a OSC blob. Control connection data is sent directly as floating point values over the
same OSC protocol. Additional information such as the internal object state is also visualized
with data provided by the sound synthesizer. The ”Aura” of a LFO for example, is pulsating in
order to reflect the LFO’s oscillation frequency in a visual way.

To draw the visual feedback the graphics engine uses the platform independent accelerated
OpenGL library. Drawing styles can be changed by selecting different graphical schemes, which
commonly are called skins. It is also possible to create new skins, which makes the look-and-
feel of a reacTable* performance easily customizable. Figure 5.20 shows an example of the
visualization.

reacTable* hardware As in the current prototype the complete reacTable* hardware is installed
within a round wooden table with a semitransparent plastic surface. This surface allows the
projection of the visual feedback and is sufficiently transparent to clearly detect the object symbols
while they are in contact with the table surface. This property has the additional advantage that



5.5. Controlling sound production 212

objects are immediately lost by the vision sensor when they are lifted from the table, From
beneath a standard projector and a firewire camera are covering the complete table surface of
around one meter in diameter. This is achieved within a considerable small distance by using
mirrors and wide-angle lenses. In order to separate the camera acquisition from the projection
image the table’s optical system is working within two separate spectra. The camera is operating
completely within the near infrared spectrum, illuminating the table’s interior with an array of
infrared LEDs and filtering the visible light using an IR photography filter. While common CCD
cameras are sensitive to the near IR illumination it is completely invisible to the human player.
The projection of course is operating within the visible spectrum, while its infrared component
is filtered away to avoid light flares in the camera image.

Performing with the reacTable*

At the time of this writing, the reacTable* is not yet completely finished. It is still more a prototype
than a real musical instrument. While we have yet to learn to play it, some models of playing
can already be anticipated.

Novel and occasional users: discovering the reacTable* The reacTable* has been conceived
for a wide spectrum of users. From the absolute novice in an interactive installation setup, to
professional performers in concert venues. This is attempted by designing an instrument as
intuitive as possible, and at the same time, capable of the maximum complexities.

The reacTable* was conceived to be played from the first minute, without a user manual or
a single line of instructions. The approach taken towards novice users could be summarized in
the following sentence: avoid user’s frustration at any cost. To avoid frustrations, a system does
not necessarily have to be completely understandable, but it has to be coherent and responsible.
The reacTable* has to work “by default” and any gesture has to produce audible results, so for
example if on start-up, a user activates an object that does not sound (i.e. a control object) the
closest audio object is automatically linked to it (and the link is visualized).

The reacTable* wants to be user-proof. For instance, it seems natural that in an installation
context, after some minutes exploring the instrument some visitors may start stressing the system
in different ways, like placing personal objects onto the table. Although it is no possible to
anticipate all objects that users may use, some of the more common could be detected (mobile
phones, keys, pens, lipsticks, cigarette packets, lighters) and a “funny” functionality could be
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added to them (e.g. mobiles could be used as cheesy mobile-like melody generators).

Advanced reactablists: performing and mastering the instrument The reacTable* can bring
increasing and compelling complexities for the advanced users, allowing them to combine si-
multaneously diverse and complementary performance approaches and techniques. We describe
here four of them.

Towards the luthier-improviser continuum Within traditional modular visual programming
synthesizers, there is a clear separation between building and playing the patch (or instrument):
There is an editing and an execution mode. The editing is usually a lengthy development
process, which leads to a final and stable instrument patch, which then during the execution
mode is controlled on screen or via any available controller device. The reacTable* has to be
built and played at the same time. Each piece has to be constructed from scratch starting from
an empty table (or from a single snapshot which has been re-constructed on the table before
the actual performance). This is a fundamental characteristic of this instrument, which therefore
always has to evolve and change its setup. Building the instrument is equivalent to playing it and
vice-versa. Remembering and repeating the construction of a building process can be compared
to the reproduction of a musical score. The reacTable* establishes thus a real continuum not only
between composition and performance, but between lutherie, composition and performance.

Whereas FMOL has proved to be quite flexible, its architecture is predefined by a grid of
6x4 generators and processors, which have to be previously selected from a palette of presets,
so that the process of building an orchestra is not done in realtime while playing. Moreover, in
FMOL all the macro-control of form is done like in traditional analog synthesizers, by means
of simple and relatively low-level LFOs and arpeggiators. The reacTable* overcomes all these
limitations. Its open structure favors (a) the existence of all types of higher level objects, such as
the ones we could imagine within an environment such as Max or Pd(e.g. sophisticated rhythm
and melody generators, chaotic generators, pitch quantizers and harmonizers, etc.), and (b) the
construction of all kind of sound synthesis and processing nets and topologies.

Moreover, the reacTable* connection paradigm in which by moving an object around the
table surface, the performer is able to permanently interfere and alter existing connections, creates
extremely variable and yet because of visual feedback easily understandable and predictable
synthesizer morphologies, just at the reach of one hand.
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The bongosero-karateka model The reacTable* also permits physically intense playing. Grab-
bing, lifting and dropping objects with both hands, cutting flows with karate-like gestures and
reactivating them by touching the objects again, will only be limited by the computer vision
engine speed. The current implementation predicts that the input frame rate will not go below
30 Hz, while 60 Hz is attainable with an adequate camera.

The caresser-masseur-violinist model Objects on the table permanently sense at least three
parameters, depending on their relative position within the net topology and of their angle
orientation. This allows for very subtle and intimate control. Moving and twisting delicately
two objects allows to precisely control six parameters, without scarifying voluntarily brusque
and sudden morphology changes and discontinuities.

The painter model The reacTable* allows free finger-drawing directly on all of the table’s
surface. This functionality includes drawing envelopes, wavetables or spectra, depending on
which objects are situated nearby.

The reacTable* as a collaborative multi-user instrument The reacTable* supports a flexible
number of users with no predefined roles, and allows simultaneously additive (users work-
ing on independent audio threads) as well as multiplicative (users sharing control of audio
threads) behaviors. Because of the way physical objects are visually and virtually augmented,
the reacTable* also constitutes a perfect example of the local and remote all-at-once multi-user
instrument. In a local collaboration scenario two or more players can share the same physical
objects and their space. This collaborative space is only limited by the diameter of the table and
by the players’ claustrophobia, but a normal situation we would support between two and four
players. This amount can be extended when two or more reacTables* are connected through the
net. Sharing the same virtual space only, performers can only move the physical objects on their
local table, while these are only projected onto the remote table, Their movement may modify the
shared audio threads, thus provoking interactions between displaced objects, so that one filter
controlled in Barcelona may process the output of a generator in Linz. In a third collaboration
scenario, remote users could join a reacTable* session with a software simulation, where the
virtual table would have the same impact as remote tables, without the tangible interaction.
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The reacTable*: Conclusion

In the reacTable*, performers share complete access to all the musical threads by moving physical
objects (representing generators, filters, etc.) on a table surface and constructing different audio
topologies in a sort of tangible modular synthesizer or graspable flow-controlled programming
Max-like language. Unlike many new designed instruments, its origin does not come from
approaching its creation by exploring the possibilities of a specific technology, nor from the
perspective of mimicking a known instrumental model. The reacTable* comes from our expe-
rience designing instruments, making music with them, and listening and watching the way
others have played them. The reacTable* team15 is currently constituted by Sergi Jordà, Martin
Kaltenbrunner, Günter Geiger, Ross Bencina, Hugo Solis, Marcos Alonso and Alvaro Barbosa. It
is an ambitious project, in which, needless to say, we have placed great hope and expectation.
We expect it to leave the laboratory soon, and for people to start creating wonderful music with
it.

5.5.5 The interactive book

A book is a very well known object which everyone has used at least once in his life. It plays
an important role in children education: most of us learned colors, names of animals and
numbers just ‘reading’ or better interacting with some nice, colored pull-the-tab and lift-the-flap
books. In the last decades children’s books have been modified in order to use new interaction
channels, inserting technology inside this old medium or using the book metaphor to develop
new interfaces. It is quite clear that technology did not change too much for the book in thousand
years: the history of books has seen new printing and composition techniques but the users are
still basically dealing with the same artifact. Thus, the book as an object guarantees a high level
of functionality. This section16 is a review of book interfaces with particular attention to future

15We would like to thank the former interns within the reacTable* team Ignasi Casasnovas, José Lozano and Gerda
Strobl for their valuable contributions to the project. We are also thankful for Enrico Costanza’s contribution of his
d-touch vision engine and Sile O’Modhrain’s suggestions to our initial tangible prototype. This work was partially
supported by the European Commission Cost287-ConGAS action on Gesture controlled Audio Systems.

16The conception and realization of an early prototype of a sound-augmented book were carried on by the second
author as part of the Sounding Object project17. Later on, students Damiano Battaglia (Univ. of Verona) and Josep
Villadomat Arro (Univ. Pompeu Fabra, Barcelona, visiting Verona in 2004) realized the sketches that are described
in this paper as part of graduation projects, under the guidance of the authors. At the moment, the first author is
pursuing her PhD on fundamental issues in sound-mediated interaction, such as causality and Fitts’ Law, and she
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developments of children’s books, since the latter feature most of the possible applications related
to sound and interaction.

Introduction

Current commercial interactive books for children are very often similar to conventional colored
stories with the addition of some pre-recorded sounds which can be triggered by the reader. The
limitations of these books are evident: the sounds available are limited in number and diversity
and they are played using a discrete control (typically a button). This means that sounds are
irritating rather than being a stimulus to interact with the toy-book or allowing for learning by
interaction.

Pull-the-tab and lift-the-flap books play a central role in the education and entertainment
of most children all over the world. Most of these books are inherently cross-cultural and highly
relevant in diverse social contexts. For instance, Lucy Cousins, the acclaimed creator of Maisy
(Pina in Italy), has currently more than twelve million books in print in many different languages.
Through these books, small children learn to name objects and characters, they understand the re-
lations between objects, and develop a sense of causality by direct manipulation [Hutchins et al.,
1986, Schneiderman, 2002] and feedback. The importance of sound as a powerful medium has
been largely recognized and there are books on the market that reproduce prerecorded sounds
upon pushing certain buttons or touching certain areas. However, such triggered sounds are
extremely unnatural, repetitive, and annoying. The key for a successful exploitation of sounds
in books is to have models that respond continuously to continuous action, just in the same way
as the children do when manipulating rattles or other physical sounding objects. In other words,
books have to become an embodied interface [Dourish, 2001] in all respects, including sound.

The history of interactive books

In the nineties, the introduction of the e-book was supposed to trigger a revolution similar to
that of CDs versus vinyl recordings. Many companies tried to produce hardware and software
devoted to digital reading: an important example is the Gemstar GEB 2150 [Negroponte, 1996],
which was a portable e-book reader. Unfortunately, in 2003 Gemstar had to stop the development
and production of its products (Softbook, Nuvomedia, GEB, etc.). The main problem that was

is looking at children books as a possible application scenario.
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Figure 5.26: The Gemstar GEB 2150 e-book portable reader

immediately apparent in this commercial flop (beyond the enthusiastic expectations [Negroponte,
1996]) was that researchers thought to identify the book object with just one informative medium:
its text. Such an electronic book cannot win when compared with the traditional book: the
thickness of a book, the possibility of quickly browsing its pages, etc. are all important features.
Some experiments about the rendering of such features have been carried out [Chu et al., 2003,
2004, Sheridon and Berkovitz, 1977].

In 1968 Kay Goldberg [Kay and Goldberg, 1977] started to work on the Dynabook. The
Dynabook was thought to be a portable instrument which guaranteed simultaneous memory
storage and access to all the necessary information using different user–selectable modes. The
same information (texts, images or sounds) could be managed in a different way each time around
according to user needs. The Dynabook in Fig.5.27 can be seen as an ancestor of the modern
notebooks or tablet-PCs.

The research aim was mostly focused on translating in electronic form the book object and
all the information that could be derived from the medium. The technology was still the main
focus and the main problem, while user interaction was still the last priority. The user had to
bend over to technology and the opposite was hardly taken into consideration. Forty years ago,
when the first Dynabook was realized, the main problem was to realize portable and effective
instruments with the available technology: nowadays the computation power and the costs
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Figure 5.27: The Dynabook

are not a problem any longer while creativity is the new frontier. The Gemstar and Dynabook
experiences have shown that the book interface is really strong and that a successful approach
could involve the hiding of technology leaving the original interface similar to the old winning
one as much as possible.

Focusing on augmented books for children, it is worthwhile to mention the work done
by researchers of the Xerox PARC (Palo Alto Research Center) Laboratories. In the SIT (Sound-
Image-Text) book prototype [Back et al., 2001] the idea was to use sensors in order to use the
reader hands’ speed as control parameter for some sounds effects. Listen Reader [Back et al.,
1999] is the natural prosecution of the SIT Book project: while in the SIT Book the sounds effects
are used to create a soundscape for the narrative content, here the sound part is a foreground
element in itself, conveying information about what the child is reading. Gestures are used
to control the sound synthesis, and the electronic part is completely hidden to enhance the
naturalness of the interaction.

The Listen Reader [Back et al., 2001] was the natural development of the SIT Book project.
While in the SIT book the audio effects are a sort of background for the story, this interface uses
music as an important element of the storyboard. Sounds are informative about the environment
and about what is happening in the story. The prototype is a seat with a stand where the interactive
book is placed: user gestures control sound synthesis and a Radio-Frequency Identifier (RFID)
sends information about the precise page which the user is currently looking at. The technology
is hidden from the user who is interacting with some very usual objects such as a seat and a book
(see fig. 5.28).
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Figure 5.28: Children playing with the Listen Reader

Future perspectives

In recent years, the European project “The Sounding Object”18 was entirely devoted to the
design, development, and evaluation of sound models based on a cartoon description of physical
phenomena. In these models the salient features of sounding objects are represented by variables
whose interpretation is straightforward because based on physical properties. As a result, the
models can be easily embedded into artefacts and their variables coupled with sensors without
the need of complex mapping strategies.

Pop-up and lift-the-flap books for children were indicated as ideal applications for sound-
ing objects [Rocchesso et al., 2003], as interaction with these books is direct, physical, and es-
sentially continuous. Even though a few interactive plates were prototyped and demonstrated,
in-depth exploitation of continuous interactive sounds in children books remains to be done.

Everyday sounds can be very useful because of the familiar control metaphor: no expla-
nation nor learning is necessary [Brewster, 2002]. Moreover, it is clear that the continuous audio
feedback affects the quality of the interaction and that the user makes continuous use of the
information provided by sounds to adopt a more precise behavior: the continuously varying
sound of a car engine tells us when we have to shift gears. In this perspective sound is the key

18http://www.soundobject.org

http://www.soundobject.org
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for paradigmatic shifts in consumer products. In the same way as spatial audio has become
the characterizing ingredient for home theatres (as opposed to traditional TV-sets), continuous
interactive sounds will become the skeleton of electronically-augmented children books of the
future. The book-prototype is designed as a set of scenarios where narration develops through
sonic narratives, and where exploration is stimulated through continuous interaction and audi-
tory feedback. Through the development of the book, the class of models of sounding objects has
been deeply used and verified19. The physical models of impacts and friction have been used to
synthesize a variety of sounds: the steps of a walking character, the noise of a fly, the engine of a
motor bike, and the sound of an inflatable ball.

Scenarios Design

The integration and combination of the sound models available from the Sounding Object project
in an engaging tale has been studied. The first step was to create demonstration examples of
interaction using different kinds of sensors and algorithms. During this phase the most effective
interactions (i.e. easier to learn and most natural) have been chosen, and several different
scenarios were prepared with the goal of integrating them in a common story. The scenarios
use embedded sensors, which are connected to a central control unit. Data is sent to the main
computer using UDP messages through a local network from sensors and the sound part is
synthesized using custom designed Pure Data (Pd)20 patches. These Pdpatches implement a set
of physical models of everyday sounds such as friction, impacts, bubbles, etc. and the data
coming from sensors is used to control the sound object model in real time. In the following
subsections an investigation scenario will be described.

Steps The steps scenario shows a rural landscape with a road; an embedded slider allows the
user to move the main character along the road, and all movement data are sent to the computer,
where the velocity of the character is calculated and a sound of footsteps is synthesized in real-
time. The timing, distance, and force of the sound of each step is modified as a function of the
control velocity. Fig. 5.29 shows a preliminary sketch, while fig. 5.30 shows the final prototype
with the embodied sensor.

19http://www.soundobject.org/articles.html
20http://www.pure-data.info

http://www.soundobject.org/articles.html
http://www.pure-data.info


5.6. Multimodal and cross-modal control of interactive systems 221

Figure 5.29: The user is looking at the scene, identifies the moving part and tries to move the
character generating sound

Conclusions

Our investigation shows that in a near future lift-the-flap books for children will be augmented
by sounds that respond continuously and consistently to control gestures. The sample scenario
shown in the previous paragraph demonstrates the effectiveness of sound as an engaging form of
feedback and the possibility of embedding real-time physics-based models of everyday sounds
in small inexpensive stand-alone systems. A relevant part of future work will concentrate on
real-world tests with children that will enhance the playability/usability of prototype books.
Another aspect which will be further developed is the embedding and the sophistication of the
technologies used.

5.6 Multimodal and cross-modal control of interactive systems

The development of multimodal and cross-modal algorithms for integrated analysis of mul-
timedia streams offers an interesting challenge and opens novel perspectives for research on
multimedia content analysis, multimodal interactive systems, innovative natural and expres-
sive interfaces Camurri et al. [2004e], especially in the framework of multimodal and expressive
control of interactive systems.

Multimodal processing enables the integrated analysis of information coming from dif-
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Figure 5.30: Interaction through slider: the footsteps scenario prototype

ferent multimedia streams (audio, video) and affecting different sensorial modalities (auditory,
visual). Cross-modal processing enables exploiting potential similarities in the approach for
analyzing different multimedia streams so that algorithms developed for analysis in a given
modality (e.g., audio) can be also employed for analysis in another modality (e.g., video).

This chapter presents and discusses some concrete examples of multimodal and cross-
modal algorithms we used for analysis of expressive gesture Camurri et al. [2004c] and for
real-time control of interactive systems. The algorithms have been implemented as software
modules (blocks) or applications (patches) for the new EyesWeb 4 platform Camurri et al. [2005b]
(www.eyesweb.org) which differently from its predecessors directly and explicitly supports mul-
timodal and cross-modal processing.

5.6.1 Cross-modal processing: visual analysis of acoustic patterns

A first application of cross-modal processing consists in the analysis by means of computer
vision techniques of acoustic patterns extracted from an audio signal by means of a collection of
EyesWeb 4 modules for auditory modeling.

Such modules are included in an EyesWeb library providing the whole auditory processing
chain, i.e., cochlear filter banks, hair cell models, and auditory representations including excita-
tion pattern, cochleogram, and correlogram Camurri et al. [2005a]. The design of the cochlear
filter banks relies on the Matlab Auditory Toolbox Slaney [1994]. To date, a filter bank configura-

file:www.eyesweb.org
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tion can be exported in XML format and loaded into the EyesWeb plug in (see Figure 5.31). For
example the cochleogram of voice sound is depicted in Figure 5.32.

The cochleogram images can be analyzed by image processing techniques to extract in-
formation that is not so directly accessible through audio analysis (e.g., activation of particular
regions in the image, pattern matching with template images).

Figure 5.31: Design of the auditory filter bank through the Matlab Auditory Toolbox

In this first example of cross-modal techniques the cochleogram images are analyzed by
applying to them the techniques for motion analysis included in the EyesWeb Gesture Processing
Library Camurri et al. [2004d]. For example, in order to quantify the variation of the cochleogram,
i.e., the variance over time of the spectral components in the audio signal, Silhouette Motion
Images (SMIs) and Quantity of Motion (QoM) Camurri et al. [2003] are used. Figure 5.33 shows
the SMI of a cochleogram (red shadow). It represents the combined variation of the audio signal
over time and frequency in the last 200 ms. The area (i.e., number of pixels) of the SMI (that in
motion analysis is usually referred to as Quantity of Motion, i.e., the amount of detected overall
motion) summarizes such variation of the audio signal, i.e., it can be considered as the detected
amount of variation of the audio signal both along time and along frequency in the time interval
over which the corresponding SMI is computed (200 ms in this example).

From a first analysis of the data obtained with this approach it seems that the QoM
obtained from the SMIs of the cochleograms can be employed for onset detection especially
at the phrase level, i.e., it can be used for detection of phrase boundaries. In speech analysis
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Figure 5.32: Cochleogram of a voice sound obtained through the auditory model blocks

the same technique can be used for segmenting words. Current research includes performance
analysis and comparison with state-of-the-art standard techniques.

5.6.2 Cross-modal processing: auditory-based algorithms for motion analysis

Cross-modal processing applications can also be designed in which the analysis of movement
and gestures is inspired by audio analysis algorithms. An example is the patch shown in Figure
5.34, in which a pitch detector is used to measure the frequency of periodic patterns in human
gestures: the vertical displacement of a moving hand, measured from the video input signal and
rescaled, is converted into the audio domain through an interpolation block, and then analyzed
through a pitch detector based on the autocorrelation function.

Motion-derived signals and audio signals differ in terms of sampling rate and band char-
acteristics. The conversion from a motion-derived signal to one in the audio domain can be
performed in principle by upsampling and interpolating the input signal, and a dedicated con-
version block is available to perform this operation. If mi−1 and mi are the previous and present
input values respectively, and ti is the initial time of the audio frame in seconds, the audio-rate
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Figure 5.33: SMI of a cochleogram (red shadow) and graph of the corresponding QoM

samples are computed by linear interpolation as

s(ti +
n

Fs
) = mi−1 + n

(mi −mi−1)
Ns

, n = 1 . . .Ns

where Ns is a selected audio frame length at a given audio sampling rate Fs. However, often
sound analysis algorithms are designed to operate in frequency ranges that are much higher if
compared to those related to the velocity of body movements. For this reason, the conversion
block also provides amplitude modulation (AM) and frequency modulation (FM) functions to
shift the original signal band along the frequency axis. If

c(t) = Ac cos(2π fct)

is a sinusoidal carrier wave with carrier amplitude Ac and carrier frequency fc, an AM audio-rate
signal can be computed as

sm(t) = Acs(t) cos(2π fct),

and an FM signal as

sm(t) = Ac cos(2π fct + 2π
∫ t

0
s(t)dt).
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Figure 5.34: An example of EyesWeb application for cross-modal analysis of movement: the
hand vertical displacement, measured from the video signal, is converted into the audio domain
and analyzed through a pitch detector.

The approach to motion analysis by algorithms inspired to acoustic and/or musical cues extraction
can be explored further. A possible application is, for example, the control of a digital score
reproduction (e.g., a MIDI file) through the detection of tempo, onset, IOI, and other similar
musical parameters from the arm and hand movements.

5.6.3 Multimodal processing for analysis of touch gestures

As an example of multimodal analysis of gestural information let us consider an experimental
application for the analysis of touch gesture based on Tangible Acoustic Interfaces (TAIs).

Designing and developing TAIs consists of exploring how physical objects, augmented
surfaces, and spaces can be transformed into tangible-acoustic embodiments of natural seamless
unrestricted interfaces. TAIs can employ physical objects and space as media to bridge the gap
between the virtual and physical worlds and to make information accessible through large size
touchable objects as well as through ambient media. Research on TAI is carried out for example in
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the framework of the EU-IST project TAI-CHI (Tangible Acoustic Interfaces for Computer-Human
Interaction).

The aim of the sample application here described is twofold: (i) locate where on a TAI
the touch gesture takes place, and (ii) analyze how touching is performed (i.e., individuating the
expressive qualities of the touching action, such as for example whether the touching action is
light and delicate or heavy and impulsive).

The approach to analysis is multimodal since both the information extracted from the
acoustic signal generated by the touching action on the TAI and the information extracted from
a video-camera toward the touching position are used.

Localization is based on two algorithms for in-solid localization of touching positions de-
veloped by the partners in the TAI-CHI project. The first algorithm, developed by the Image and
Sound Processing Group at Politecnico di Milano employs 4 sensors and is based on the compu-
tation of the Time Delay of Arrival (TDOA) of the acoustical waves to the sensors Polotti et al.
[2005]. The second algorithm developed by the Laboratoire Ondes et Acoustique at the Institut
pour le Developement de la Science, l’Education et la Technologie, Paris, France, employs just 1
sensor and is based on pattern matching of the sound patterns generated by the touching action
against a collection of stored patterns. In order to increase the reliability of the detected touching
position we developed an EyesWeb application integrating the two methods and compensating
the possible weakness of one method with the outcomes of the other one.

The position and time of contact information obtained from audio analysis can be employed
to trigger and control in a more precise way the video-based gesture analysis process: e.g., we
are testing hi-speed and hi-res videocameras in EyesWeb 4 in which it is also possible to select
the portion of the active ccd area using (x,y) information from a TAI interface.

Video-based analysis (possibly combined with information extracted from the sound gen-
erated by the touching action, e.g., the sound level) is then used for extraction of expressive
qualities. Gesture analysis is based on hand detection and tracking and builds upon the extrac-
tion of information concerning both static and dynamic aspects. As for the static aspects we
developed a collection of EyesWeb modules for real-time classification of hand postures. Clas-
sification employs machine learning techniques (namely, Support Vector Machines). As for the
dynamic aspects we used the expressive features currently available in the EyesWeb Expressive
Gesture Processing Library (e.g., Quantity of Motion, Contraction/Expansion, Directness Index
etc.). Figure 5.35 shows for example the output of an EyesWeb module for the extraction of the
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hand skeleton.

Figure 5.35: An EyesWeb 4 patch extracting the skeleton of a hand touching a TAI

In other words, while the contact position is detected through an acoustic based localization
system, visual information is employed to get information on how the hand approaches and
touches the interface (e.g., with a fluent movement, or in a hesitating way, or in a direct and quick
way etc.).

5.6.4 Future perspectives for cross-modal analysis

This chapter presented some concrete examples of cross-modal and multimodal analysis tech-
niques. The preliminary results from these sample applications indicate the potentialities of a
multimodal and cross-modal approach to expressive gesture processing: cross-modal techniques
enable to adapt to the analysis in a given modality approaches originally conceived for another
modality, allowing in this way the development of novel and original techniques. Multimodality
allows integration of features and use of complementary information, e.g., use of information in



5.7. Acknowledgements 229

a given modality for supplementing lack of information in another modality or for reinforcing
the results obtained by analysis in another modality.

While these preliminary results are encouraging, further research is needed for fully ex-
ploiting cross-modality and multimodality (especially in expressive gesture processing). For
example, an open problem which is currently under investigation at DIST - InfoMus Lab con-
cerns the development of high-level models allowing the definition of cross-modal features. That
is, while the work described in this paper concerns cross-modal algorithms, a research challenge
consists of identifying a collection of features that, being at a higher-level of abstraction with
respect to modal features, are in fact independent of modalities and can be considered cross-
modal since they can be extracted from and applied to data coming from different modalities.
Such cross-modal features are abstracted from the currently available modal features and de-
fine higher-level feature spaces allowing for multimodal mapping of data from one modality to
another.
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Chapter 6
Physics-based Sound Synthesis

Cumhur Erkut, Vesa Välimäki, Matti Karjalainen, and Henri Penttinen

Helsinki University of Technology, Lab. Acoustics and Audio Signal Processing, Espoo, Finland

Abstract: This chapter provides the current status and open problems in the field of
physics-based sound synthesis. Important concepts and methods of the field are discussed, the
state of the art in each technique is presented. The focus is then shifted towards the current direc-
tions of the field. The future paths are derived and problems that deserve detailed collaborative
research are indicated.

6.1 Introduction

Physics-based sound synthesis focuses on developing efficient digital audio processing algo-
rithms built upon the essential physical behavior of various sound production mechanisms. The
model-based representation of audio can be used in many digital audio applications, including
digital sound synthesis, structural analysis of sounds, automatic transcription of musical signals,
and parametric audio coding.

Physics-based sound synthesis is currently one of the most active research areas in audio
signal processing Välimäki et al. [2004b], Välimäki [2004], Smith [2004c]. Many refinements to
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existing algorithms, as well as several novel techniques are emerging. The aim of this chap-
ter is to provide the current status in physics-based sound synthesis by summarizing various
approaches and methodologies within the field, capture the current directions, and indicate
open problems that deserve further research. A comprehensive review of physics-based sound
synthesis methods is underway Välimäki et al. [2005], and other excellent reviews and tutori-
als are readily available Smith [2004c, 1996], Borin et al. [1992], De Poli and Rocchesso [1998],
Välimäki and Takala [1996], Välimäki [2004]. Our aim is not duplicate these efforts; we rather
focus on selective aspects related to each method. Sec. 6.2 presents background information
about these aspects. An important point is that we structurally classify the physics-based sound
synthesis methods into two main groups according to their variables used in computation.

In Sec. 6.3, without going into technical details (the reader is referred to Välimäki et al.
[2005] for a detailed discussion of each method), we briefly outline the basics, indicate recent
research, and enlist available implementations. We then consider some current directions in
physics-based sound synthesis in Sec. 6.3.3, including the discussion on recent systematic efforts
to combine the two structural groups of physics-based sound synthesis.

A unified modular modeling framework, in our opinion, is one of the most important open
problems in the field of physics-based sound synthesis. There are, however, other problems,
which provide the content of Sec. 6.4.

6.2 General Concepts

A number of physical, and signal processing concepts are of paramount importance in physics-
based sound synthesis. The background provided in this section is crucial for understanding
problem definition in Sec. 6.2.3, as well as the state of the art and the open problems discussed in
the subsequent sections.

6.2.1 Different flavors of modeling Tasks

Physical mechanisms are generally complex, and those related to the sound production mech-
anisms are no exceptions. A useful approach for dealing with complexity is to use a model,
which typically is based on an abstraction that suppress the non-essential details of the original



6.2. General Concepts 243

problem and allows selective examination with the essential aspects1. Yet, an abstraction is task-
dependent and it is used for a particular purpose, which in turn determines what is important
and what can be left out.

One level of abstraction allows us to derive mathematical models (i.e., differential equa-
tions) of physical phenomena. Differential equations summarize larger-scale temporal or spatio-
temporal relationships of the original phenomena on an infinitesimally small basis. Musical

acoustics, a branch of physics, relies on simplified mathematical models for a better understand-
ing of the sound production in musical instruments Benade [1990], Fletcher and Rossing [1998].
Similar models are used to study the biological sound sources Fletcher [1992].

Computational models is for long a standard tool in various disciplines. At this level, the
differential equations of the mathematical models are discretized and solved by computers, one
small step at a time. Computational models inherit the abstractions of mathematical models, and
add one more level of abstraction by imposing an algorithm for solving them Press et al. [2002].
Among many possible choices, digital signal processing (DSP) provides an advanced theory and
tools that emphasize computational issues, particularly maximal efficiency.

Computational models are the core of physics-based sound synthesis (hence the aliases
physical modeling [Smith, 1992, 1996] or model-based sound synthesis [Karjalainen et al., 2001]). In
addition, physics-based sound synthesis inherits constraints from the task of sound synthesis
Smith [1991], Tolonen et al. [1998], Cook [2002b], i.e., representing huge amount of audio data
preferably by a small number of meaningful parameters. Among a wide variety of synthesis and
processing techniques, physically-based methods have several advantages with respect to their
parameters, control, efficiency, implementation, and sound quality Jaffe [1995].

6.2.2 Physical domains, systems, variables, and parameters

Physical phenomena occur in different physical domains: string instruments operate in mechanical,
wind instruments in acoustical, and electro-acoustic instruments (such as the analog synthesizers)
operate in electrical domains. The domains may interact, as in the electro-mechanical Fender
Rhodes, or they can be used as analogies (equivalent models) of each other. Analogies make
unfamiliar phenomena familiar to us. It is therefore not surprising to find many electrical circuits
as analogies to describe phenomena of other physical domains in a musical acoustics textbook

1As in Einstein’s famous dictum: everything should be made as simple as possible, but no simpler.
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Fletcher and Rossing [1998].

A physical system is a collection of objects united by some form of interaction or inter-
dependence. A mathematical model of a physical system is obtained through rules (typically
differential equations) relating measurable quantities that come in pairs of variables, such as force
and velocity in the mechanical domain, pressure and volume velocity in the acoustical domain,
or voltage and current in the electrical domain. If there is a linear relationship between the dual
variables, this relation can be expressed as a parameter, such as impedance Z = U/I being the
ratio of voltage U and current I, or by its inverse, admittance Y = I/U. An example from the
mechanical domain is mobility (mechanical admittance) as the ratio of velocity and force. When
using such parameters, only one of the dual variables is needed explicitly, because the other one
is achieved through the constraint rule.

The physics-based sound synthesis methods use two types of variables for computation,
K-variables and wave variables. K-variables refer to the Kirchhoff continuity rules of dual quan-
tities mentioned above, in contrast to wave components of physical variables. Instead of pairs
of K-variables, the wave variables come in pairs of incident and reflected wave components. The
decomposition into wave components is clear in such wave propagation phenomena, where
opposite-traveling waves add up to the actual observable K-quantities. A wave quantity is
directly observable only when there is no other counterpart. It is, however, a highly useful
abstraction to apply wave components to any physical cases, since this helps in solving com-
putability (causality) problems in discrete-time modeling.

6.2.3 Dichotomies, problem definition, and schemes

Similar to the wave and K-variables, important concepts in physics-based sound synthesis form
dichotomies that come into the play in the structure, design, implementation, and execution of
the physics-based sound synthesis techniques. These dichotomies are enlisted in Table. 6.1. In
general, the properties in the first column are easier to handle compared to those in the second.
Thus, the properties in the second column readily point out open research problems. We will
elaborate these problems in Sec.6.4.

For the purposes of this chapter, the main problem of physics-based sound synthesis is
to derive efficient, causal, and explicit computational models for high-quality, natural-sounding
synthetic audio, which are optimally balancing accuracy, efficiency, and ease of control. These
models should operate in the widest range of physical domains and handle the nonlinearities and
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causal non-causal

explicit implicit

lumped distributed

linear nonlinear

time-invariant time-varying

DSP-based not DSP-based

terminals ports

passive active

stability guarantee no stability guarantee

monolithic modular

Table 6.1: Dichotomies in physics-based sound synthesis

parameter updates in a robust and predictable manner. In this respect, a DSP-based formulation
and stability guarantee are desirable features. Port-based formulations and modular schemes
have certain advantages when attempting to design a general, unified framework for physics-
based sound synthesis.

Based on the dichotomies and the problem definition, two general schemes for physics-
based sound synthesis emerge. One way of decomposing a physics-based sound synthesis system
is highlighting the functional elements exciter and resonator Borin et al. [1992] (abbreviated in
Fig. 6.1 as E-object and R-object, respectively). In this generic scheme, the exciter and the
resonator are connected through ports. The exciter is usually nonlinear, whereas resonator is
usually linear, and can be decomposed in sub-models. The interaction between the objects is
usually handled implicitly within the system.

Alternatively, a modular system with explicit local interactions is schematically illustrated
in Fig. 6.2. This scheme was first proposed in Borin et al. [1992], but only recently it is being
used for implementing physics-based sound synthesis systems. In Fig. 6.2, an S-object represents
a synthesis module that can correspond to both the exciter and the resonator of Fig. 6.1. An
I-object is an explicit interconnection object (connector). Each synthesis module has internal and
external parameters, with a reference of their accessibility from the connector. Internal parameters
of a synthesis module (such as port admittances) are used by a connector for distributing the
outgoing signals; they are only meaningful if the objects are linked. The external parameters
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E-object R-object

external�

parameters
external�

parameters

signals

Figure 6.1: Excitation plus resonator paradigm of physics-based sound synthesis.

S-object I-object

external�

parameters

S-object

external�

parameters
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internal�

parameters
internal�

parameters

metadata metadata

Figure 6.2: Modular interaction diagram.

are specific attributes of a synthesis module. Finally, metadata contains descriptors such as the
domain or the type of the synthesis module. Note that locality implies that only neighboring
synthesis modules are connected to a connector.

A reader who is already familiar with the concepts mentioned so far may want to proceed
to Sec. 6.3, and read how the available methods relate to the general schemes presented here, and
what is the current status in each of them. For others, these concepts are explained in the rest of
this section.
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6.2.4 Important concepts explained

Physical structure and interaction

Physical phenomena are observed as structures and processes in space and time. As a universal
property in physics, the interaction of entities in space always propagates with a finite velocity.
Causality is a fundamental physical property that follows from the finite velocity of interaction
from a cause to the corresponding effect. The requirement of causality introduces special com-
putability problems in discrete-time simulation, because two-way interaction with no delay leads
to the delay-free loop problem. An evident solution is to insert a unit delay into the delay-free loop.
However, this arbitrary delay has serious side effects (see Borin et al. [2000], Avanzini [2001]).
The use of wave variables is advantageous, since the incident and reflected waves have a causal
relationship.

Taking the finite propagation speed into account requires using a spatially distributed

model. Depending on the case at hand, this can be a full 3-D model such as that used for room
acoustics, a 2-D model such as for a drum membrane, or a 1-D model such as for a vibrating
string. If the object to be modeled behaves homogeneously as a whole, for example due to its
small size compared to the wavelength of wave propagation, it can be considered a lumped system
that does not need spatial dimensions.

Signals, signal processing, and discrete-time modeling

The word signal typically means the value of a measurable or observable quantity as a function
of time and possibly as a function of place. In signal processing, signal relationships typically
represent one-directional cause-effect chains. Modification of signals can be achieved technically
by active electronic components in analog signal processing or by numeric computation in DSP.
This simplifies the design of circuits and algorithms compared to two-way interaction that is
common in (passive) physical systems, for example in systems where the reciprocity principle is
valid. In true physics-based modeling, the two-way interactions must be taken into account. This
means that, from the signal processing viewpoint, such models are full of feedback loops, which
further implicates that the concepts of computability (causality) and stability become crucial, as
will be discussed later.

We favor the discrete-time signal processing approach to physics-based modeling when-
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ever possible. The motivation for this is that digital signal processing is an advanced theory
and tool that emphasizes computational issues, particularly maximal efficiency. This efficiency
is crucial for real-time simulation and sound synthesis. Signal flow diagrams are also a good
graphical means to illustrate the algorithms underlying the simulations.

The sampling rate and the spatial sampling resolution need more focus in this context.
According to the sampling theorem Shannon [1948], signals must be sampled so that at least
two samples must be taken per period or wavelength for sinusoidal signal components or their
combinations, in order to make the perfect reconstruction of a continuous-time signal possible.
This limit frequency, one half of the sampling rate, is called the Nyquist frequency. If a signal
component higher in frequency fx is sampled by rate fs, it will be aliased, i.e. mirrored by the
Nyquist frequency back to the base band by fa = fs − fx. In audio signals, this will be perceived as
very disturbing distortion, and should be avoided. In linear systems, if the inputs are bandlimited
properly, the aliasing is not a problem because no new frequency components are created, but in
nonlinear systems aliasing is problematic. In modeling physical systems, it is also important to
remember that spatial aliasing can be a problem if the spatial sampling grid is not dense enough.

Linearity and time invariance

Linearity of a system means that the superposition principle is valid, i.e., quantities and signals
in a system behave additively ‘without disturbing’ each other. Mathematically, this is expressed
so that if the responses {y1(t), y2(t)} of the system to two arbitrary input signals {x1(t), x2(t)},
respectively, are x1(t)→ y1(t) and x2(t)→ y2(t), then the response to Ax1(t)+Bx2(t)→ Ay1(t)+By2(t)
is the same as the sum of the responses to Ax1(t) and Bx2(t), i.e., Ay1(t)+ By2(t), for any constants
A and B.

A linear system cannot create any signal components with new frequencies. If a system
is nonlinear, it typically creates harmonic (integer multiples) or intermodulation (sums and
differences) frequency components. This is particularly problematic in discrete-time computation
because of the aliasing of new signal frequencies beyond the Nyquist frequency.

If a system is both linear and time invariant (LTI), there are constant-valued parameters that
effectively characterize its behavior. We may think that in a time-varying system its characteristics
(parameter values) change according to some external influence, while in a nonlinear system the
characteristics change according to the signal values in the system.



6.2. General Concepts 249

Linear systems or models have many desirable properties. In digital signal processing,
LTI systems are not only easier to design but also are typically more efficient computationally. A
linear system can be mapped to transform domains where the behavior can be analyzed by alge-
braic equations Oppenheim et al. [1996]. For continuous-time systems, the Laplace and Fourier
transforms can be applied to map between the time and frequency domains, and the Sturm-
Liouville transform Trautmann and Rabenstein [2003] applies similarly to the spatial dimension2

. For discrete-time systems, the Z-transform and the discrete Fourier transform (DFT and its fast
algorithm, FFT) are used.

For nonlinear systems, there is no such elegant theory as for the linear ones; rather, there
are many forms of nonlinearity, which require different methods for example, depending on
which effect is desired. In discrete-time modeling, nonlinearities bring problems that are difficult
to solve. In addition to aliasing, the delay-free loop problem and stability problems can become
worse than they are in linear systems. If the nonlinearities in a system to be modeled are spatially
distributed, the modeling task is even more difficult than with a localized nonlinearity.

Energetic behavior and stability

The product of dual variables such as voltage and current gives power, which, when integrated
in time, yields energy. Conservation of energy in a closed system is a fundamental law of physics
that should also be obeyed in physics-based modeling.

A physical system can be considered passive in the energetic sense if it does not produce
energy, i.e., if it preserves its energy or dissipates it into another energy form, such as thermal
energy. In musical instruments, the resonators are typically passive, while excitation (plucking,
bowing, blowing, etc.) is an active process that injects energy to the passive resonators.

The stability of a physical system is closely related to its energetic behavior. Stability can be
defined so that the energy of the system remains finite for finite-energy excitations. In this sense,
a passive system always remains stable. From the signal processing viewpoint, stability may
also be meaningful if it is defined so that the variables, such as voltages, remain within a linear
operating range for possible inputs in order to avoid signal clipping and distortion. For system
transfer functions, stability is typically defined so that the system poles (roots of the denominator
polynomial) in a Laplace transform remain in the left half plane, or that the poles in a Z-transform

2A technical detail: unlike Laplace transform, Sturm-Liouville transform utilizes a non-unique kernel that
depends on the boundary conditions.
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in a discrete-time system remain inside the unit circle Oppenheim et al. [1996]. This guarantees
that there are no responses growing without bounds for finite excitations.

In signal processing systems with one-directional interaction between stable subblocks, an
instability can appear only if there are feedback loops. In general, it is impossible to analyze such
a system’s stability without knowing its whole feedback structure. Contrary to this, in models
with physical two-way interaction the passivity rule is a sufficient condition of stability, i.e., if
each element is passive, then any arbitrary network of such elements remains stable.

Modularity and locality of computation

For a computational realization, it is desirable to decompose a model systematically into blocks
and their interconnections. Such an object-oriented approach helps manage complex models
through the use of the modularity principle. The basic modules can be formulated to correspond
to elementary objects or functions in the physical domain at hand. Abstractions of new macro
blocks on the basis of more elementary ones helps hiding details when building excessively
complex models.

For one-directional interactions in signal processing, it is enough to have input and out-
put terminals for connecting the blocks. For physical interaction, the connections need to be
done through ports, with each port having a pair of K- or wave variables depending on the
modeling method used. This follows the mathematical principles used for electrical networks
Nilsson and Riedel [1999].

Locality of interaction is a desirable modeling feature, which is also related to the concept
of causality. In a physical system with a single propagation speed of waves, it is enough that a
block interacts only with its nearest neighbors; it does not need global connections to compute
its task. If the properties of one block in such a localized model vary, the effect automatically
propagates throughout the system. On the other hand, if some effects propagate for example
at the speed of light but others with the speed of sound in air, the light waves are practically
simultaneously everywhere. If the sampling rate in a discrete-time model is tuned to audio
bandwidth (typically 44.1 or 48 kHz sample rate), the unit delay between samples is too long to
represent light wave propagation between blocks. Two-way interaction with zero delay means a
delay-free loop, the problem that we often face in physics-based sound synthesis. Technically it
is possible to realize fractional delays Laakso et al. [1996], but delays shorter than the unit delay
contain a delay-free component, so the problem is hard to avoid. There are ways to make such
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systems computable, but the cost in time (or accuracy) may become prohibitive for real-time
processing.

Types of complexity in physics-based modeling

Models are always just an approximation of real physical phenomena. Therefore, they reduce the
complexity of the target system. This may be desired for a number of reasons, such as keeping the
computational cost manageable, or more generally forcing some cost function below an allowed
limit. These constraints are Particularly important in real-time sound synthesis and simulation.

A model’s complexity often is the result of the fact that the target system is conceptually
overcomplex to a scientist or engineer developing the model, and thus cannot be improved by
the competence or effort available. An overcomplex system may be deterministic and modelable
in principle but not in practice: It may be stochastic due to noise-like signal components, or it
may be chaotic so that infinitesimally small disturbances lead to unpredictable states.

A particularly important form of complexity is perceptual overcomplexity. For example, in
sound synthesis there may be no need to make the model more precise, because listeners cannot
hear the difference. Phenomena that are physically prominent but do not have any audible effect
can be excluded in such cases.

6.3 State-of-the-Art

This section starts with an analytical overview of physics-based methods and techniques for mod-
eling and synthesizing musical instruments with an emphasis on the state of the art in each
technique. The methods are grouped according to their variables. Wherever possible, we indi-
cate their relation to the concepts and general schemes discussed in Sec.6.2.

Although some basic methods are commonly used in acoustics, we have excluded them
because they do not easily solve the task of discrete-time modeling and simulation. For example,
methods to solve the underlying partial differential equations are theoretically important but
do not directly help in simulation or synthesis. Finite element and boundary element meth-
ods are generic and powerful for solving system behavior numerically, particularly for linear
systems in the frequency domain, but we focus on inherently time-domain methods. Three-
dimensional spaces, such as rooms and enclosures, can be modeled by the image source and ray
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tracing techniques combined with late reverberation algorithms, but only the last one is useful
in approximating resonators in musical instruments.

The second part of this section is devoted to a discussion of the current status of the field,
as indicated by recent publications. Our approach there is holistic and synthetic. This part also
helps us to extrapolate the current trends into the future paths and indicate the open problems
of the field.

Our discussion so far has (indirectly) pointed out many fields related to the physics-based
sound synthesis, including physics (esp. musical acoustics), mathematics, computer science,
electrical engineering, digital signal processing, computer music, perception, human-computer
interaction, and control. A novel result in these fields surely effects our field. However in order
to keep our focus directed and the size of this chapter manageable, we have excluded these fields
in our discussion.

6.3.1 K-models

Finite difference models

A finite difference scheme is a generic tool for numerically integrating differential equations
Strikwerda [1989]. In this technique, the mathematical model, which is typically distributed on
a bounded spatio-temporal domain, corresponds to the excitation plus resonator paradigm (see
Fig.6.1). This mathematical model is discretized with the help of grid functions and difference
operators. The numerical model can be explicit or implicit (in this case, iteration may be needed)
Strikwerda [1989]. In either case, the operations are local. Typically one physical K-variable is
directly observable, and the other is hidden in the states of the system.

In general, finite differences can be applied to a broad range of physical domains, such
as electro-magnetic Taflove [1995], acoustic Botteldooren [1994], or mechanical Chaigne [1992].
An early example of using finite differences in physics-based sound synthesis can be found in
Hiller and Ruiz [1971a,b]. Since then, finite differences have been applied successfully to multi-
dimensional structures Chaigne [1992], Chaigne and Askenfelt [1994a,b], Chaigne and Doutaut
[1997]. Currently, Chaigne systematically extends this line of research Chaigne [2002]. Among
similar lines, a full-scale finite-difference piano model has been recently proposed in Giordano and Jiang
[2004].
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The finite difference model parameters are typically derived from the physical material
properties, although the loss terms in most cases are simplified due to the lack of a general theory.
Recently, a mixed derivative term is shown to have superior numerical properties for modeling
frequency dependent losses compared to higher-order temporal differences Bensa et al. [2003b].

Standard DSP tools for analysis and design cannot be facilitated for finite difference mod-
els, as they do not follow regular DSP formulations. Recent DSP-oriented finite difference
(re)formulations attempt to fill this gap Smith [2004b,a], Pakarinen [2004], Karjalainen and Erkut
[2004]. In particular, Smith [2004a] is based on the state-space formalism Zadeh and Desoer [1963]
to relate the finite differences to digital waveguides (see Sec. 6.3.2) or to any other LTI model.

The starting point in Karjalainen and Erkut [2004] is the duality between the ideal waveguide

mesh (see Sec. 6.3.2) and 2-D finite difference model Savioja et al. [194]. This duality has been
generalized to non-homogeneous media in higher dimensions, resulting in a modular local
interaction scheme based on two K-variables (see Fig.6.2). Another advantage of this formulation
is its efficiency in higher dimensions, which has been nicely exploited in Kelloniemi et al. [2005]
for designing an efficient artificial reverberator with a dense modal pattern. From a different
perspective, the relation of finite difference models and other modular techniques has been
tackled in Barjau and Gibiat [2002] in case of wind instrument models.

The DSP tools aside, von Neumann analysis provides a standard technique for investigat-
ing the stability of an LTI finite-difference structure Strikwerda [1989], Press et al. [2002], Savioja
[1999], Bilbao [2001]. Although finite difference schemes have provisions for modeling nonlin-
ear and time-variant systems, it has been difficult to analyze their stability and passivity. Recent
efforts of Bilbao provided a time-domain energetic analysis technique that is applicable to nonlin-
ear and time-varying cases Bilbao [2005a]. In addition, a finite difference model that successfully
simulates the distributed nonlinearities is presented in Pakarinen et al. [2005], Pakarinen [2004].

Although the locality of the finite difference structures have been exploited for parallel
processing in general applications, in sound synthesis a parallel implementation has been rarely
addressed. An exception is Motuk et al. [2005], which reports a parallel hardware implementation
of a 2-D plate equation. Despite the large number of publications in the field, available sound
synthesis software consists of a few Matlab toolboxes that focus on 1-D structures Kurz and Feiten
[1996], Kurz [1995], Karjalainen and Erkut [2004]. The DSP-oriented finite difference structures
have been implemented in BlockCompiler3 Karjalainen [2003b,a], Karjalainen et al. [2003].

3http://www.acoustics.hut.fi/software/BlockCompiler/. Distribution and license undetermined.

http://www.acoustics.hut.fi/software/BlockCompiler/
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Mass-spring networks

This group of techniques (also refereed to as mass-interaction, cellular or particle systems) decom-
pose the original physical system in its structural atoms Cadoz et al. [1983]. These structural
atoms are masses, springs, and dash-pots in the mechanical domain, although domain analogies
may also be used. The interactions between the atoms are managed via explicit interconnection
elements that handle the transfer of the K-variables between the synthesis objects. By imposing
a constraint on the causality of action and reaction, and by using finite-difference formalism,
modularity is also achieved Cadoz et al. [1983]. Thus, it is possible to construct complex mod-
ular cellular networks that are in full compliance with the diagram in Fig. 6.2. Mass-spring
systems typically include special interaction objects for implementing time-varying or nonlinear
interactions Florens and Cadoz [1991]. However, the energetic behavior and stability analysis of
the resulting network is hard to estimate, since the existing analysis tools apply only to LTI cases.

The principles of mass-spring networks for physics-based sound synthesis were intro-
duced by Cadoz and his colleagues within their system CORDIS-ANIMA Cadoz et al. [1983,
1993], which is a comprehensive audio-visual-tactile system. Their developments, achievements,
and results in a large time-span are outlined in a recent review article Cadoz et al. [2003]. The most
advanced sound synthesis model by mass-spring networks (and probably by any physics-based
algorithm) is the model that creates the musical piece ”pico..TERA”. In this model, thousands of
particles and many aggregate geometrical objects interact with each other to create 290 seconds
of music without any external interaction or post-processing. Despite the successful examples,
constructing a detailed mass-spring network is still a hard task, since the synthesis objects and
their interaction topology require a large number of parameters. To address this issue, Cadoz and
his coworkers developed helper systems for support, authoring, analysis, and parameter estima-
tion of mass-spring networks Castagné and Cadoz [2002], Cadoz et al. [2003], Szilas and Cadoz
[1998].

A renewed interest (probably due to the intuitiveness of the mass-spring metaphor) in
cellular networks resulted in other systems and implementations, which are built upon the
basic idea of the modular interactions but placing additional constraints on computation, sound
generation, or control. These systems are PMPD Henry [2004b,a], TAO Pearson [1995, 1996], and
CYMATIC Howard and Rimell [2004].

PMPD4 closely follows the CORDIS-ANIMA formulation for visualization of mass-spring

4PMPD has multi-platform support and it is released as a free software under the GNU Public License (GPL). It
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networks within the pd-GEM environment Puckette [1997], and defines higher-level aggregate
geometrical objects such as squares and circles in 2-D or cubes or spheres in 3-D. Although the
package is a very valuable tool for understanding the basic principles or mass-spring networks,
it has limited support for audio synthesis.

TAO5 specifically addresses the difficulty of model construction and introduces a scripting
language. It uses a static topology of masses and springs, and provides pre-constructed 1-
D (string) or 2-D (triangle, rectangle, circle, and ellipse) modules, but 3-D modules are not
supported. Operations such as deleting the mass objects for constructing shapes with holes and
joining the shapes are defined. For efficiency and reduction in the number of parameters, TAO
constrains the spring objects by using a fixed spring constant. The system is driven by a score;
the audio output is picked-up by virtual microphones and streamed to a file, which is normalized
when the stream finishes.

The synthesis engine of CYMATIC is based on TAO, but it introduces two important
improvements. The first improvement is the replacement of the forward differences common in
all previous systems by central differences. The central differences result in a more stable model
and reduce the frequency warping. The second improvement over TAO is the support for 3-D
structures.

Modal synthesis

Linear resonators can also be described in terms of their vibrational modes in the frequency
domain. This representation is particularly useful for sound sources that have a small number of
relatively sharp resonances (such as the xylophone or the marimba Bork et al. [1999]), and may be
obtained by experimental modal analysis Ewins [1986], Bissinger [2003]. The modal description,
which essentially a frequency-domain concept, was successfully applied to discrete-time sound
synthesis by Adrien Adrien [1989, 1991]. In his formulation, the linear resonators (implemented
as a parallel filterbank) are described in terms of their modal characteristics (frequency, damping
factor, and mode shape for each mode), whereas connections (representing all non-linear aspects)
describe the mode of interaction between objects (e.g. strike, pluck, or bow). These ideas were
implemented in MOSAIC software platform Morrison and Adrien [1993], which is later ported

can be downloaded from http://drpichon.free.fr/pmpd/.
5TAO is an active software development project and it is released as a free software under the GPL. It resides at

http://sourceforge.net/projects/taopm/

http://drpichon.free.fr/pmpd/
http://sourceforge.net/projects/taopm/
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and extended to Modalys6.

Modal synthesis is best suited for mechanical domain and uses K-variables; it is modular
and supports the bi-directional interaction scheme of Fig.6.2 (usually by iteration). The res-
onator filterbank is essentially a lumped model, however a matrix block brings back the spatial
characteristics of a distributed system by transforming the input force to modal coordinates for
weighting the individual resonances. An excellent DSP formulation of modal synthesis, based
on the state-space formalism, can be found in Smith [2004b].

If the modal density of a sound source is high (such as a string instrument body), or if there
are many particles contained in a model (such as a maracas) modal synthesis becomes computa-
tionally demanding. If the accuracy is of paramount importance (for example, in understanding
the string-body coupling mechanism in a guitar Woodhouse [2004a,b]), then simplifications are
not preferred. However, in sound synthesis, instead a detailed bookkeeping of each mode or
particle, using stochastic methods significantly reduce the computational cost without sacrific-
ing the perceived sound quality Cook [1997], Lukkari and Välimäki [2004b]. The basic building
blocks of modal synthesis, as well as stochastic extensions are included in STK Cook [2002b],
Cook and Scavone [1999]7.

Two linear modal resonators linked by an interaction element a la Fig.6.2 has been reported
in Rocchesso and Fontana [2003]. The interaction element simulates nonlinear impact or friction
iteratively and provides energy to the modal resonators. These impact and friction models are
implemented as pd plugins8.

The functional transform method (FTM) is a recent development closely related to the
modal synthesis Trautmann and Rabenstein [2003]. In FTM, the modal description of a resonator
is obtained directly from the governing PDEs by applying two consecutive integral transforms
(Laplace and Sturm-Liouville) to remove the temporal and spatial partial derivatives, respec-
tively. The advantage of this approach is that while traditional modal synthesis parameters are
bound to the measured modal patterns of complex resonators, FTM can more densely explore
the parameter space, if the problem geometry is simple enough and physical parameters are
available. More recently, nonlinear extensions of the method, as well multirate implementa-
tions to reduce the computational load have been reported Trautmann and Rabenstein [2004],

6Proprietary software of IRCAM, see http://www.ircam.fr/logiciels.html
7STK has multiplatform support and it is released as open source without any specific license. It can be down-

loaded from http://ccrma.stanford.edu/software/stk/
8Available from http://www.soundobject.org/software.html, license unspecified.

http://www.ircam.fr/logiciels.html
http://ccrma.stanford.edu/software/stk/
http://www.soundobject.org/software.html
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Petrausch and Rabenstein [2005b].

Source-filter models

When an exciter in Fig.6.1 is represented by a signal generator, a resonator by a time-varying filter,
and the bi-directional signal exchange between them is reduced to unidirectional signal flow from
the exciter towards the resonator, we obtain a source-filter model. In some cases, these reductions
can be physically justified (see Erkut [2002] for discussion concerning plucked string instruments),
however in general they are mere simplifications, especially when the source is extremely com-
plex, such as in the human voice production Kob [2004], Titze [2004], Arroabarren and Carlosena
[2004] or in biosonar signal formation of marine mammals Erkut [2004].

Since the signal flow is strictly unidirectional, this technique does not provide good means
for interactions. However, the resonators may be decomposed to arbitrary number of subblocks,
and outputs of several exciters may be added. Thus, to a certain degree, the modularity is
provided. The exciter is usually implemented as a switching wavetable, and resonators are
simple time-varying filters. An advantage here is that these components are included in every
computer music and audio signal processing platform. Thus, source-filter models can be used
as early prototypes of more advanced physical models.

This is for example the case in virtual analog synthesis. This term became popular when
the Nord Lead 1 synthesizer was introduced to the market as “an analog-sounding digital
synthesizer that uses no sampled sounds9”. Instead, a source-filter based technique was used.
More physically oriented sound synthesis models of analog electric circuits have been recently
reported in Huovilainen [2004]Karjalainen et al. [2004a].

The main reason of our focus on the source-filter models here is the commuted synthesis

technique Smith [1993], Karjalainen et al. [1993b]. Recent references include Laurson et al. [2004],
Välimäki et al. [2004a, 2003], Laurson et al. [2002, 2001].

9http://www.clavia.com/

http://www.clavia.com/
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6.3.2 Wave models

Wave digital filters

The wave digital filter (WDF) theory is originally formulated for conversion of analog filters
into digital filters Fettweis [1986]. In phyics-based sound synthesis, a physical system is first
converted to an equivalent electrical circuit using the domain analogies, then each circuit element
is discretized (usually by the bilinear transform). Each object is assigned a port impedance and
the energy transfer between objects is carried out by explicit interconnection objects (adaptors),
which implement Kirchhoff laws and eliminate the delay-free loops. WDF models are mostly
used as exciters, but are also applicable to resonators.

Recent references include Bilbao [2001], Bensa et al. [2003a], Bilbao et al. [2003], Bilbao
[2004, 2005b] de Sanctis et al. [2005], Sarti and Tubaro [2002], Sarti and Poli [1999] van Walstijn and Scavone
[2000], van Walstijn and Campbell [2003]

Digital waveguides

Digital waveguides (DWGs) are the most popular physics-based method for 1-D structures, such as
strings and wind instruments Smith [2004b]. The reason for this is their extreme computational
efficiency. They have been used also in 2-D and 3-D modeling, but in such cases they are not
superior in efficiency.

A DWG is a bi-directional delay line pair with an assigned port admittance Y and it
accommodates the wave variables of any physical domain. The change in Y across a junction
of the waveguide sections causes scattering, and the scattering junctions of interconnected ports
have to be formulated. Since DWGs are based on the wave components, this is not a difficult
task, as the reflected waves can be causally formulated as a function of incoming waves. DWGs
are mostly compatible with wave digital filters, but in order to be compatible with K-modeling
techniques, special conversion algorithms must be applied to construct hybrid models.

Recent references include Shelly and Murphy [2005] Bensa et al. [2005] Essl et al. [2004b]Essl et al.
[2004a] Smith [2004b] Bank et al. [2003] Esquef and Välimäki [2003] Rocchesso and Smith [2003]
de la Cuadra et al. [2001] Serafin and Smith [2001]
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6.3.3 Current directions in physics-based sound synthesis

Around the mid-1990s, the research reached the point, where most Western orchestral instruments
could be synthesized based on a physical model. A comprehensive summary of this line of re-
search is provided in Smith [2004c]. More recently, many papers have been published on the mod-
eling of ethnic and historical musical instruments. These include, for example, the Finnish kantele
Karjalainen et al. [1993a], Erkut et al. [2002], the Turkish tanbur Erkut and Välimäki [2000], the
bowed bar Essl and Cook [2000], ancient Chinese flutes de la Cuadra et al. [2001], an African
flute de la Cuadra et al. [2002], the Tibetan praying bowl Essl and Cook [2002], Essl et al. [2004a],
and the Japanese sho Hikichi et al. [2003], among others.

We have also recently seen applications of physical modeling techniques to non-musical
sound sources. Some examples of this are physical modeling of bird song Kahrs and Avanzini
[2001], Smyth and Smith [2002], Smyth et al. [2003], various everyday sounds, such as those
generated by wind chimes Cook [1997], Lukkari and Välimäki [2004a], footsteps Cook [2002a],
and beach balls Rocchesso and Dutilleux [2001], and friction models that can be applied in many
cases Avanzini et al. [2002]. An interesting aspect in this line of research, especially in Cook
[1997] and Rocchesso and Fontana [2003] is the stochastic higher-level control blocks that govern
the dynamics of simplistic (”cartoonified”) low-level resonator structures.

Another direction is the subjective evaluation of perceptual features and parameter changes
in physics-based synthesis, see, Rocchesso and Scalcon [1999], Lakatos et al. [2000], Järveläinen et al.
[2001], Järveläinen and Tolonen [2001]. This line of research provides musically relevant informa-
tion on the relation of timbre and the properties of human hearing [REF:ENS CHAPTER]. These
results help in reducing the complexity of synthesis models, because details that are inaudible
need not be modeled.

The first attempts at audio restoration based on physical models were conducted recently
Esquef et al. [2002]. While this can be successful for single tones, the practical application of
such methods for recordings including a mix of several instruments is a challenge for future
research. The main problem is high-quality source separation, which is required before this kind
of restoration process. Sophisticated algorithms have been devised for this task, but generally
speaking, separation of a musical signal into individual source signals is still a difficult research
problem (see e.g. Klapuri [2003] and [REF:UPF CHAPTER]).

Using hybrid approaches in sound synthesis to maximize strengths and minimize weak-
nesses of each technique, has been previously addressed in Jaffe [1995]. It has been pointed
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out that hybridization typically shows up after a technique has been around for some time and
its characteristics have been extensively explored. A basic question, with increasing research
interest, is to understand how different discrete-time modeling paradigms are interrelated and
can be combined, whereby K-models and wave models can be understood in the same theo-
retical framework. In Karjalainen et al. [2004b] recent results are indicated, both in the form
of theoretical discussions and by examples. Several other examples are given in Smith [2004c]
andVälimäki et al. [2005]. Here, we focus on systematic approaches for constructing hybrid mod-
els, which address computability, accuracy, stability, and efficiency of the resulting structure.

A general method for constructing K-hybrids has been reported in Borin et al. [2000].
Based on the state-space formulation, this method performs a geometrical transformation on the
nonlinearities to cut instantaneous dependencies. This can be done in two different ways; either
as a table lookup, or iteratively by the Newton-Raphson method. The second approach has been
successfully applied to construction of K-hybrids in Avanzini [2001]. Note that this approach
essentially converts exciter-resonator type of K-models (see Fig. 6.1) to the modular, interactive
scheme of Fig. 6.2.

The wave methods are more apt for hybrid modeling, as the WDF and DWG structures
are mostly compatible. Moreover, the adaptors in WDFs and the isomorphic scattering junctions
eliminate the delay-free loops and support the modular interaction scheme of Fig. 6.2. Because
of these desirable properties, many wave-hybrids are reported, see Smith [2004c,b]. In addi-
tion, a recent generalized formulation of multivariable waveguides and scattering allows DWG
networks to be constructed in a more compact way Rocchesso and Smith [2003].

Two systematic ways of interconnecting the wave models and K-models to construct KW-
hybrids have been recently reported. One way of constructing KW-hybrids is to formulate a
particular modular K-model with explicit instantaneous interaction elements a la Fig.6.2, and
then to use a special KW-converter. The advantage of this approach is that the full dynam-
ics of the K-model is preserved and its scheduling is made similar to that of the wave model.
The disadvantage of this approach is that it is not general, as each K-model should be formu-
lated separately for instantaneous modular interactions. Such a formulation is carried out in
Karjalainen and Erkut [2004] for finite-difference structures.

Another way of constructing KW-hybrids is to formulate the K-models within the state-
space formalism (as a black-box with added ports), and choose the port resistance to break
instantaneous input-output path to avoid delay-free loops. The advantage of this approach is its
generality, as any LTI K-model can be formulated as a state-space structure Smith [2004b]. The
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disadvantage of this approach is that the dynamics of the K-model is hidden and its scheduling
has to be separately authorized. A KW-hybrid modeling formulation based on the state-space
formalism is presented in Petrausch and Rabenstein [2005a].

An example might better indicate why the hybrid modeling is currently a hot-topic.
RoomWeaver Beeson and Murphy [2004] is a software based integrated development environ-
ment for the design, modeling and rendering of virtual acoustic spaces, based on the multidi-
mensional DWG mesh. Since multidimensional finite difference structures Savioja et al. [194] are
computationally more efficient Karjalainen and Erkut [2004], Kelloniemi et al. [2005] but poor
in implementing the boundary conditions as DWG meshes do, a KW-hybrid (constructed by
using the KW-converters Karjalainen and Erkut [2004]) is used in Room Weaver for an efficient
solution. A fan-shaped room was simulated at the sampling rate of 44.1 kHz using 260330 nodes.
The results show that both the computation time and the memory usage halves in the hybrid
mesh compared to the conventional one.

6.4 Open Problems and Future Paths

6.4.1 Sound sources and modeling algorithms

There are many ethnic and historical musical instruments yet to be studied. An acoustical
study may be combined with the physics-based sound synthesis in order to verify the acoustical
characteristics of the instrument in focus. Moreover, there is a vast amount of performance
characteristics to be explored. Ideally, these characteristics should be extracted from recordings
rather than isolated experiments.

Physical parameter extraction techniques need to be extended. For best sound quality,
computational methods that automatically calibrate all the parameter values of a physical model
according to the sound of a good instrument should exist. This is very challenging and almost
hopeless for some methods, and relatively easy only for some special cases.

Physical virtual analog synthesis is an important future path. Building an analog circuit
and comparing the measured physical variables with the synthetic ones may improve the tuning
of the virtual analog model parameters, and thus the quality of the audio output. Since many
analog electrical, mechanical, and acoustical systems can be decomposed into elementary com-
ponents, it is desirable to build a library of such components. The theory of wave digital filters
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[Fettweis, 1986] may be facilitated for this purpose.

Important future directions in hybrid modeling include analysis of the dynamic behavior
of parametrically varying hybrid models, as well as benchmark tests for computational costs of
the proposed structures.

Motivated by the possible immersive and virtual reality applications [REF: DEI CHAPTER,
VIPS-CHAPTER], the directivity and distributed radiation research and modeling are expected
to be major challenging problems in physics-based sound synthesis in the next decade.

6.4.2 Control

The use of nonlinear dynamics Strogatz [1994] to control the simplistic low-level sound source
models (as opposed to the stochastic control blocks of Cook [1997] and Rocchesso and Fontana
[2003]) is surprisingly under-researched (the most mature applications are mentioned in Cadoz et al.
[2003]). If carefully designed, the discrete-time nonlinear blocks can successfully modify the char-
acteristics of simplistic synthesis objects in a dynamical fashion. This way, coherent and plausible
sonic behavior (including synchronization and flocking Strogatz [2003]) of a large group of ani-
mate/inanimate objects may be efficiently modeled. The research in this direction is underway,
and preliminary results are reported in Peltola [2004].

Going back to less exotic sound sources, the user control (or “playing”) of physical models
of musical instruments is another problem area where general solutions are unavailable. The pi-
ano is one of the easiest cases, because the player only controls the fundamental frequency and dy-
namic level of tones. In the cases of string and wind instruments, the control issue requires clever
technical solutions. The control of virtual musical instruments is currently a lively research field
Paradiso [1997], Cook [1992], Howard and Rimell [2004], Karjalainen and Mäki-Patola [2004].
Physics-based modeling for real-time sound synthesis of musical instruments is well-suited for
interactive virtual reality. The parameters for model control are intuitive and closely related to
the parameters used in controlling real instruments. These issues are further elaborated in [REF:
DEI SECTION] and [REF:ControlChapter].
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6.4.3 Applications

An ultimate dream of physical modeling researchers and instrument builders is virtual proto-
typing of musical instruments. This application will preeminently require physical models with
excellent precision in the simulation of sound production. A musical instrument designer should
have the possibility to modify a computer model of a musical instrument and then play it to verify
that the design is successful. Only after this would the designed instrument be manufactured.
Naturally, fine details affecting the timbre of the instrument should be faithfully simulated, since
otherwise this chain of events would be fruitless. Current research is still far away from this goal
and more research work is required.

The concept of Structured Audio introduced as part of the MPEG-4 international mul-
timedia standard has opened a new application field for physical models Vercoe et al. [1998]:
parametric coding of music, where a program for sound generation of the instruments and con-
trol data for playing the instrument are transmitted. The practical use of this idea remains a
dream for the future.

In addition to synthesizing musical sounds, in the future, the physical modeling techniques
are expected to be applied to numerous everyday sound sources for human-computer interfaces,
computer games, electronic toys, sound effects for films and animations, and virtual reality
applications.

Despite a long development history, significant recent advances, and premises such as
control, efficiency, and sound quality, the physics-based sound synthesis still lacks a wide-spread
use in music as a compositional tool for a composer/user (as opposed to a performance tool for
an enthusiast), although several case studies have been reported in Chafe [2004]. We believe that
the most important factor behind this is the lack of a unified modular modeling framework in full
compliance with the scheme in Fig.6.2. Such a framework should optimally balance accuracy,
efficiency, and ease of control, and operate in the widest range of physical domains. It should
also and handle the parameter updates in a robust and predictable manner in real-time. Useful
tools and metaphors should minimize the time devoted to instrument making and maximize the
time devoted to music making. Designing such a framework may require a holistic approach
spanning the domain from the sound to sense, and bringing the expertise in audio, control,
and music together. In this respect, only the surface is scratched so far de Sanctis et al. [2005],
Karjalainen [2003b], Karjalainen et al. [2003] (see also http://www-dsp.elet.polimi.it/alma/) and
there is a vast amount of opportunities for further research and development.

http://www-dsp.elet.polimi.it/alma/
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6.5 Conclusions

To be written.
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Teemu Lukkari and Vesa Välimäki. Modal synthesis of wind chime sounds with stochas-
tic event triggering. In Proc. NORSIG 2004, Espoo, Finland, June 2004b. URL
http://www.acoustics.hut.fi/publications/papers/norsig04-wind/.

J. Morrison and J. M. Adrien. MOSAIC: A framework for modal synthesis. Computer Music

Journal, 17(1):45–56, 1993.

E. Motuk, R. Woods, and S. Bilbao. Parallel implementation of finite difference schemes for
the plate equation on a FPGA-based multi-processor array. In Proc. European Sig. Proc. Conf.,
Antalya, Turkey, Sep. 2005. URL http://www.music.qub.ac.uk. Accepted for publication.

J. W. Nilsson and S. A. Riedel. Electric Circuits. Prentice-Hall, 6th edition, 1999.

A. V. Oppenheim, A. S. Willsky, and S. H. Navab. Signals and Systems. Prentice-Hall, second
edition edition, 1996.
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Chapter 7
Interactive sound

Federico Avanzini
University of Padova, Dep. of Information Engineering, Padova, Italy

Abstract

The research status in sound modeling for interactive computer animation and virtual reality
applications is reviewed. It is argued that research in this field needs to become more aware of
studies in ecological perception and multimodal perception. A number of relevant studies in
these fields, that address auditory perception, are reviewed.

7.1 Introduction

This chapter tries to trace a route that, starting from studies in ecological perception and action-
perception loop theories, goes down to sound modeling and design techniques for interactive
computer animation and virtual reality applications.

We do not intend to (and most of all we am not able to) provide an in-depth discussion
about different theories of perception. We rather review a number of studies from experimental
psychology that can have relevant implications for the design of auditory feedback in interactive
settings.

280
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We start from the analysis of relevant related literature in perception and end with sound
modeling. The technically inclined reader may turn the chapter upside-down and start reading
the last sections, referring to the initial material when needed.

7.2 Ecological acoustics

Perception refers to how animals, including humans, can be aware of their surroundings.

Perception involves motions of receptor systems (often including the whole body), and
action involves motion of effectors (often including the whole body). Thus, the perception and
control of behavior is largely equivalent to the perception and control of motion. Movements are
controlled and stabilized relative to some referents. To watch tennis, the eyes must be stabilized
relative to the moving ball. To stand, the body must be stabilized relative to the gravito-inertial
force environment. Action and perception can be controlled relative to a myriad of referents. We
must select referents for the control of action. The selection of referents should have a functional
basis, that is, it should depend on the goals of action (e.g., a pilot who controls orientation relative
to the ground may lose aerodynamic control, and a pilot who controls navigation relative to
gravito-inertial force will get lost). One aspect of learning to perform new tasks will be the
determination of which referents are relevant.

The ecological approach to perception, originated in the work of Gibson, refers to a par-
ticular idea of how perception works and how it should be studied. General introductions to the
ecological approach to perception are to be found in Gibson Gibson [1986] and in Michaels and
Carello Michaels and Carello [1981]. Carello and Turvey Carello and Turvey [2002] also provide
a synthetic overview of the main concepts of the ecological approach.

The label “ecological” reflects two main themes that distinguish this approach from the
establishment view. First, perception is an achievement of animal-environment systems, not
simply animals (or their brains). What makes up the environment of a particular animal –cliffs
or caves or crowds– is part of this theory of perception. Second, perception’s main purpose
is guiding activity, so a theory of perception cannot ignore what animals do. The kinds of
activities that a particular animal does how it eats and moves and mates are part of this theory
of perception.
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7.2.1 The ecological approach to perception

Direct versus indirect perception

The ecological approach is considered controversial because of one central claim: perception is
direct. To understand the claim we can contrast it with the more traditional view.

Roughly speaking, the classical theory of perception states that perception and motor con-
trol depend upon internal referents, such as the retina and cochlea. These internal, psychological
referents for the description and control of motion are known as sensory reference frames. Sen-
sory reference frames are necessary if sensory stimulation is ambiguous (i.e., impoverished) with
respect to external reality; in this case, our position and motion relative to the physical world
cannot be perceived directly, but can only be derived indirectly from motion relative to sensory
reference frames. Motion relative to sensory reference frames often differs from motion relative
to physical reference frames (e.g., if the eye is moving relative to the external environment). For
this reason, sensory reference frames bear only an indirect relation to physical reference frames.
For example, when objects in the world reflect light, the pattern of light that reaches the back of
the eye (the part called the retina) has lost and distorted a lot of detail. The job of perception,
then, becomes one of fixing the input and adding meaningful interpretations to it so that the
brain can make an inference (or educated guess) about what caused that input in the first place.
This means that accuracy depends on the perceiver’s ability to “fill in the gaps” between motion
defined relative to sensory reference frames and motion defined relative to physical reference
frames, and this filling in requires inferential cognitive processing.

A theory of direct perception, in contrast, argues that sensory stimulation is lawfully
determined in such a way that there exists a 1:1 correspondence between patterns of sensory
stimulation and the underlying aspects of physical reality Gibson [1986]. This is a very strong
assumption, since it basically says that reality is specified in the available sensory stimulation.
Intermediary steps are only needed if the scientist has described the input incorrectly.

Gibson Gibson [1986] provides an example in the domain of visual perception, which
supports, in his opinion, the direct perception theory. For centuries, scientists believed that
distance is not perceivable by eye alone. Indeed, if the objects are treated as isolated points in
otherwise empty space, then their distances on a line projecting to the eye are indistinct: each
stimulates the same retinal location. Gibson argues that this formulation is inappropriate for
addressing how we see. Instead he emphasizes the contribution of a continuous background
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surface to providing rich visual structure. The simple step of acknowledging that points do
not float in the air but are attached to a surface such as the ground introduces what might be
considered a higher-order property, the gradient.

Including the environment and activity into the theory of perception allows a better de-
scription of the input, a description that shows the input to be richly structured by the environ-
ment and the animal’s own activities. For Gibson, this realization opens up the new possibility
that perception might be veridical, that is, about facts of the world. A relevant consequence of
the direct perception approach is that sensory reference frames are unnecessary: if perception is
direct, then perceivables can be measured relative to physical referents.

Energy flows and invariants

Consider the following problem in visual perception: how can a perceiver distinguish object
motion from his or her own motion? Gibson Gibson [1986] provides an ecological solution to
this problem, from which some general concepts can be introduced.

The solution goes as follows: since the retinal input is ambiguous, it must be compared
with other input having to do with whether any muscle commands had been issued to move the
eyes or the head or the legs. In the absence of counter-acting motor commands, object motion
can be concluded; in the presence of such commands, the retinal signals would be counteracted,
allowing the alternative conclusion of self-motion. Overall (global) change in the pattern of light
is specific to self-motion; local change against a stationary background is specific to object motion.

This simple insight opened a new field of research devoted to uncovering the structure
in changing patterns of light: optic flow. Optic flow refers to the patterns of light, structured by
particular animal-environment settings, available to a point of observation. The goal of optic
flow research is to discover particular reliable patterns of optical structure, called invariants,
relevant to guiding activity. Outflow and inflow are distinct forms of optic flow distinct flow
morphologies that tell the perceiver whether she is moving forward or backward. As scientists
consider how that flow is structured by the variety of clutter that we encounter as we move
around doorways and hillsides and the like they discover invariants specific to those facts as
well.

Perceivers exploits invariants in the optic flow, in order to effectively guide their activities.
Carello and Turvey Carello and Turvey [2002] provides the following instructive example: as
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a busy waiter rushes towards the swinging door of the restaurant kitchen, he makes subtle
adjustments to his behavior in order to control his collision. He needs to maintain enough speed
to push through the door but not so much that he crashes into it. Effective behavior requires that
he knows when a collision will happen (so he does not slow down too early) and how hard the
collision will be (so that he slows down enough). Optical structure relevant to these facts can be
identified, and provides examples of quantitative invariants.

The above considerations apply not only to visual perception but also to other senses,
including audition (see Section 7.2.2 next). Moreover, recent research has introduced the concept
of global array Stoffregen and Bardy [2001]. According to this concept, individual forms of energy
(such as optic or acoustic flows) are subordinate components of a higher-order entity, the global
array, which consists of spatio-temporal structure that extends across multiple forms of ambient
energy. The general claim underlying this concept is that observers are not separately sensitive to
structures in the optic and acoustic flows but, rather, observers are directly sensitive to patterns
that extend across these flows, that is, to patterns in the global array.

Stoffregen and Bardy Stoffregen and Bardy [2001] exemplify this concept by examining
the well known McGurk effect McGurk and MacDonald [1976], which is widely interpreted as
reflecting general principles of intersensory interaction. In studies of this effect the visual portion
of a videotape shows a speaker saying one syllable, while on the audio track a different syllable
is presented. Observers are instructed to report the syllable on the audio track, and perceptual
reports are strongly influenced by the nominally ignored visible speaker. One of the most
consistent and dramatic findings is that perceptual reports frequently are not consistent with
either the visible or the audible event. Rather, observers often report “a syllable that has not been
presented to either modality and that represents a combination of both”. The sustained interest
in the McGurk effect arises in part from the need to explain how it is that the final percept differs
qualitatively from the patterns in the optic and acoustic arrays.

Stoffregen and Bardy Stoffregen and Bardy [2001] claim that the McGurk effect is consistent
with the general premise that perceptual systems do not function independently, but work in a
cooperative manner to pick up higher-order patterns in the global array. If speech perception is
based on information in the global array, then it must be unnatural (or at least uncommon) for
observers who can both see and hear the speaker to be asked to report only what is audible; the
global array provides information about what is being said, rather than about what is visible or
what is audible: multiple perceptual systems are stimulated simultaneously and the stimulation
has a single source (i. e., a speaker). In research on the McGurk effect the discrepancy between
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the visible and audible consequences of speech is commonly interpreted as a conflict between
the two modalities, but it could also be interpreted as creating information in the global array
that specifies the experimental manipulation, that is, the global array may specify that what is
seen and what is heard arise from two different speech acts.

Affordances

The most radical contribution of Gibson’s theory is probably the notion of affordance. Gib-
son [Gibson, 1986, p. 127] uses the term affordance as the noun form of the verb to afford. The
environment of a given animal affords things for that animal. What kinds of things are afforded?
The answer is that behaviors are afforded. If a stair is a certain proportion of a person’s leg length,
it affords climbing ; if a surface is rigid relative to the weight of an animal, it affords stance and
perhaps traversal; if a ball is falling with a certain velocity relative to the speed that a person can
generate in running toward it, it affords catching, and so on.

Therefore, affordances are the possibilities for action of a particular animal-environment
setting; they are usually described as -ables, as in catch-able, pass-through-able, climbable, and
so on. What is important is that affordances are not determined by absolute properties of objects
and environment, but depend on how these relate to a particular animal, including that animal’s
size, agility, style of locomotion, and so on Stoffregen [2000].

The variety of affordances constitute ecological reformulations of the traditional problems
of size, distance, and shape perception. Note that affordances and events are not identical and,
moreover, that they differ from one another in a qualitative manner Stoffregen [2000]. Events are
defined without respect to the animal, and they do not refer to behavior. Insted, affordances are
defined relative to the animal and refer to behavior (i.e., they are animal-environment relations
that afford some behavior). The concept of affordance thus emphasizes the relevance of activity
to defining the environment to be perceived.

7.2.2 Everyday sounds and the acoustic array

Ecological psychology has concentrated on visual perception. there is now interest in auditory
perception and in the study of the acoustic array, the auditory equivalent of the optic array.

The majority of the studies in this field deal with the perception of properties of environ-
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ment, objects, surfaces, and their changing relations, which is a major thread in the development
of ecological psychology in general. In all of this research, there is an assumption that properties
of objects, surfaces, and events are perceived as such. Therefore students of audition investigate
the identification of sound source properties, such as material, size, shape, and so on.

Two companion papers by Gaver Gaver [1993b,a] have greatly contributed to the build-up
of a solid framework for ecological acoustics. Specifically, Gaver [1993b] deals with foundational
issues, addresses such concepts as the acoustic array and acoustic invariants, and proposes a sort
of “ecological taxonomy” of sounds.

Musical listening versus everyday listening

In Gaver [1993b] Gaver formulates an interestin example: you are walking along a road at night
when you hear a sound. On the one hand, you might pay attention to its pitch and loudness
and the ways they change with time. You might attend to the sound’s timbre, whether it is
rough or smooth, bright or dull. You might even notice that it masks other sounds, rendering
them inaudible. These are all examples of musical listening, in which the perceptual dimensions
and attributes of concern have to do with the sound itself, and are those used in the creation of
music. These are the sorts of perceptual phenomena of concern to most traditional psychologists
interested in sound and hearing.

On the other hand, as you stand there in the road, it is likely that you will notice that the
sound is made by an automobile with a large and powerful engine. Your attention is likely to be
drawn to the fact that it is approaching quickly from behind. And you might even attend to the
environment, hearing that the road you are on is actually a narrow alley, with echoing walls on
each side. This is an example of everyday listening, the experience of listening to events rather than
sounds. Most of our experience of hearing the day-to-day world is one of everyday listening: we
are concerned with listening to the things going on around us, with hearing which are important
to avoid and which might offer possibilities for action. The perceptual dimensions and attributes
of concern correspond to those of the sound-producing event and its environment, not to those
of the sound itself. This sort of experience is not well understood by traditional approaches to
audition.

The experience of everyday listening may serve as the foundation for a new explanatory
framework for understanding sound and listening. Such a framework would allow us to under-
stand listening and manipulate sounds along dimensions of sources rather than sounds. Studies
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of audition have been further constrained by sensation-based theories of perception and the sup-
posed primitives of sound they suggest. Physical descriptions of sound are dominated by those
suggested by the Fourier transform: frequency, amplitude, phase, and duration. Traditional
explanations of psychophysics take these “primitive” physical dimensions as their elemental
stimuli and use them to motivate the identification of corresponding “elemental” sensations.
questions concerning auditory event perception – if recognised at all – are left to higher-level
cognitive accounts.

A theoretical framework for everyday listening must answer two simple but fundamental
questions. First, in expanding upon traditional accounts of elemental sensations, we must
develop an account of ecologically relevant perceptual entities: the dimensions and features of
events that we actually obtain through listening. Thus the first question to be answered is: “What
do we hear?”. Similarly, in expanding traditional accounts of the primitive physical features of
sound, we must seek to develop an ecological acoustics, which describes the acoustic properties
of sounds that convey information about the things we hear. Thus the second question to be
answered is: “How do we hear it?”

Acoustic flow and acoustic invariants

Back to the example of hearing an approaching automobile: there is continuum of energy between
the source event (the automobile) and the experience. There are several landmarks along the
way, each with its own characteristics as a medium for structured patterns of energy.

The first landmark is that of a sound-producing event, or source of sound. In the case of the
automobile, some proportion of the energy produced by burning petrol causes vibrations in the
material of the car itself (instead of contributing to its gross movement). Things tap, scrape, slosh,
rub, roll, and flutter. These mechanical vibrations, in turn, produce waves of alternating high
and low pressure in the air surrounding the car. The pattern of these pressure waves follows the
movement of the car’s surfaces (within limits determined by the frequency-dependent coupling
of the surface’s vibrations to the medium). These spreading pressure waves, then, may serve
as information about the vibrations that caused them, and thus for the event itself. When they
change with sufficient amplitude and within a range of frequencies to which the auditory system
is sensitive, the result is a sound wave from which a listener might obtain such information.

Each source of sound involves an interaction of materials. For instance, when two gears
rub against each other, the patterns of their vibration depend both on the force, duration, and
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changes over time of their interaction as well as the size, shape, material, and texture of the gears
themselves. The pressure waves produced by the resulting vibration are determined by these
attributes, and thus may serve as information about them.

Sound is also structured by and informative about the environment in which the event
occurs. Much of the sound that reaches us from a source has reflected off various other objects in
the environment, which colour the spectrum of reflected sound. In addition, the medium itself
shapes the sounds it conveys: sound waves lose energy, especially high-frequency energy, as
they travel through the air, and thus provide information about the distance of their sources. As
sources move with respect to a potential observation point, their frequencies shift, producing the
Doppler effect. Finally, changes in loudness caused by changes in distance from a source may
provide information about time-to-contact in an analogous fashion to changes in visual texture.

The result is an auditory array, analogous to the optical array. In sum, then, sound
provides information about an interaction of materials at a location in an environment. We can
hear an approaching automobile, its size and speed. We can hear where it is, and how fast
it is approaching. And we can hear the narrow, echoing walls of the alley it’s driving along.
Traditional psychologists only study part of the continuum from source to experience. Typical
research focuses on the sound itself, analysing it in terms of properties such as amplitude and
perceived loudness, or frequency and perceived pitch. Such research misses the higher-level
structures that are informative about events.

Several acoustic invariants can be associated to sound events: for instance, several attributes
of a vibrating solid, including its size, shape, and density, determines the frequencies of sound
it produces. It is quite likely that many parameters that change frequency also change other
attributes of a sound. For example, changing the size of an object will change the frequencies of
the sound it produces, but not their pattern. Changing the shape, on the other hand, changes
both the frequencies and their relationships. These complex patterns of change may serve as
information distinguishing the physical parameters responsible: These are the acoustic invariants
that an ecological acoustics is concerned with discovering.

Maps of everyday sounds

Gaver has proposed an ecological categorization of everyday sounds.

A first category includes sounds generated by solid objects. The pattern of vibrations of
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a given solid is structured by a number of its physical attributes. Properties can be grouped in
terms of attributes of the interaction causing the vibration, those of the vibrating object’s material,
and those of the object’s configuration.

Aerodynamic sounds are caused by the direct introduction and modification of atmo-
spheric pressure differences from some source. The simplest aerodynamic sound is exemplified
by an exploding balloon. Other aerodynamic sounds, such as the hissing of a leaky pipe or the
rush of wind from a fan, are caused by more continuous events. Another sort of aerodynamic
event involves situations in which changes in pressure themselves impart energy to objects,
causing them to vibrate. For example, when wind passes through a wire,

Sound-producing events involving liquids (e.g., dripping and splashing) are like those of
vibrating solids in that they depend on an initial deformation that is countered by the material’s
restoring forces. But it seems the resulting vibration of the liquid does not usually affect the air
in direct and audible ways. Instead, the resulting sounds are determined by the formation and
change of resonant cavities in the surface of the liquid. As the object hits the liquid, it pushes
it aside, forming a cavity that resonates to a characteristic frequency, amplifying and modifying
the pressure wave formed by the impact itself.

Although all sound-producing events seem to involve vibrating solids, aerodynamic, or
liquid interactions, many also depend on complex patterns of the simple events described above.
So footsteps consist of temporal patterns of impact sounds, while door slams involve the squeak
of scraping hinges and the impact of the door on its frame. Some of these involve timing of
successive events, so that, for instance, successive footstep sounds probably must occur within
a range of rates and regularities to be heard as walking. Others are likely to involve mutual
constraints on the objects that participate in related events. For instance, concatenating the creak
of a heavy door closing slowly with the slap of a light door slammed shut would be likely to
sound quite unnatural.

Starting from these considerations, Gaver derives a tentative map of everyday sounds (see
also figure 7.1).

Basic Level Sources: consider, for example, the region describing sounds made by vibrating
solids. Four fundamentally different sources of vibration in solids are indicated as basic
level events: deformation, impacts, scraping and rolling.

Patterned Sources involve temporal patterning of basic events. For instance, breaking,
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Figure 7.1: A map of everyday sounds, complexity increases towards the center. Figure based
on Gaver [1993b].

spilling, walking and hammering are all complex events involving patterns of simpler
impacts. Similarly, crumpling or crushing are examples of patterned deformation sounds.
In addition, other sorts of information are made available by their temporal complexity.
For example, the regularity of a bouncing sound provides information about the symmetry
of the bouncing object

Compound events involve more than one sort of basic level event. For instance, the sounds
made by writing involve a complex series of impacts and scrapes over time, while those
made by bowling involve rolling followed by impact sounds.

Hybrid events involve yet another level of complexity in which more than one basic sort of
material is involved. For instance, when water drips on a reverberant surface, the resulting
sounds are caused both by the surface’s vibrations and the quickly-changing reverberant
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cavities, and thus involve attributes both of liquid and vibrating solid sounds.

7.2.3 Relevant studies

Most of the papers reviewed below present results on “solids” (see figure 7.1, while there seems to
be a lack of studies on sound-producing events that involve liquids and aerodynamic interactions.
Anyway sounds from solids are especially interesting when talking about interaction: auditory
cues frequently occur when we touch or interact with objects, and these sounds often convey
potentially useful information regarding the nature of the objects with which we are interacting.

Basic level sources

Wildes and Richards Wildes and Richards [1988] have studied material perception. The purpose
of the authors was to find an acoustical parameter that could characterize material type uniquely,
i.e. despite variations in objects features such as size or shape. Materials can be characterized
using the coefficient of internal friction, which is a measure of anelasticity (in descending order
of anelasticity we have steel, glass, wood and rubber). In the acoustical domain the coefficient of
internal friction was found to be measurable using both the quality factor Q and the decay time
of vibration te, this latter measured as the time required for amplitude to decrease to 1/e of its
initial value. For decreasing anelasticity we have an increase in Q and a decrease in te.

Lutfi and Oh Lutfi and Oh [1997] have also performed a study on material perception. They
studied material discrimination in synthetic struck clamped bar sounds. Stimulus synthesis was
based on variations in the elasticity and density of the bars, whose values were perturbed about
those found in iron, silver, steel, copper, glass, crystal, quartz, and aluminium. Perturbations were
applied either to all the frequency components together (lawful covariation) or independently to
each of them (independent perturbation). On half of the trials participants had to tell which of
two presented stimuli was an iron sound, silver, steel, and copper being the alternatives, while
on the other half of the trials the target was glass, and the alternatives were crystal, quartz,
and aluminium. Participants were given feedback on the correctness of the response after each
trial. Participants performance was analyzed in terms of the weights given to three different
acoustical parameters: frequency, decay, and amplitude. Data revealed that discrimination was
mainly based on frequency in all conditions, with amplitude and decay rate being of secondary
importance.
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Klatzky and coworkers Klatzky et al. [2000] investigated material discrimination in stimuli
with variable frequency and modulus of internal friction tanφ. In the first two experiments
subjects had to judge on a continuous scale the perceived difference in the material of an object.
Stimuli had the same values of frequency and tanφ, but in the seconds experiment they were
equalized by overall energy. As results did not differ significantly in the two experiments, it could
be concluded that intensity is not relevant in the judgment of material difference. Experiments
3 and 4 were conducted on the same set of stimuli used in experiment 2. In the former subjects
had to judge the difference in the perceived length of the objects, in the latter they had to
categorize the material of the objects using four response alternatives: rubber, wood, glass and
steel. Results indicated that judgments of material difference and of length difference were
significantly influenced by both the tanφ coefficient and the fundamental frequency, even though
the contribution of the decay parameter to length difference was smaller than that to material
difference. An effect of both these variables was found in a categorization task: for lower decay
factors steel and glass were chosen over rubber and plexiglass. Glass and wood were chosen for
higher frequencies than steel and plexiglass.

Freed Freed [1990] addressed hardness perception in impact sounds. Freed’s study is
oriented toward measuring an attack related timbral dimension using a sound source oriented
judgment scale: hardness. Investigated stimuli were generated by percussing four cooking pans,
with variable diameter, with six mallets of variable hardness. Mallet hardness ratings were
found to be independent of the size of the pans, thus revealing the ability to judge properties of
the percussor independently of properties of the sounding object. The main goal of this study
was to derive a psychophysical function for mallet hardness ratings, based on the properties of
the acoustical signal. Preliminary experiments pointed out that the useful information for mallet
hardness rating was contained in the first 300 ms of the signals. For this reason acoustical analyses
focused on this portion of the signals. Four acoustical indices were measured: average spectral
level, spectral level slope (i.e., rate of change in spectral level, a measure of damping), average
spectral centroid ,and spectral centroid TWA (i.e., time weighted average). These acoustical
indices were used as predictor in a multiple regression analysis. Altogether they accounted for
75% of the variance of the ratings.

Carello et al. Carello et al. [1998] have investigated the recognition of the length of wood
rods dropped on the floor. In both the experiments, the latter focusing on shorter lengths than the
ones used in the first experiment, subjects judged the perceived length by adjusting the distance
of a visible surface in front of them. Subjects where found to be able to scale length of the rods
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consistently. Physical length was found to correlate strongly with estimated length (r = .95 in
both cases), although the second experiment showed a grater compression of the length estimates
(the slope of the linear regression function equaled .78 in the first experiment, .44 in the second
one). Analysis of the relationship between the acoustical and perceptual levels was carried on
using three acoustical features: signal duration, amplitude and spectral centroid. None of the
considered acoustical variables, apart from log amplitude in the second experiment, predicted
length estimates better than actual length. Length estimates were finally explained by means
of an analysis of the moments of inertia of a falling rod. Results of these latter analysis show
potential analogies between the auditory and the tactile domain.

Lederman Lederman [1979] compared the effectiveness of tactile and auditory informa-
tion in judging the roughness of a surface (i.e., texture). Roughness of aluminium plates was
manipulated by varying the distance between adjacent grooves of fixed width, or by varying
the width of the grooves. Subjects task was to rate numerically the roughness of the surface. In
one condition (auditory) participants were presented the sounds generated by the experimenter
who moved his fingertips along the grooved plate. In the second two conditions subjects were
asked to move their fingertips onto the plate. In the tactile condition they whore cotton plugs
and earphones while touching the plate. In the auditory+tactile condition they were able to ear
the sounds they generated when touching the plate. Roughness estimates were not different
between the auditory+tactile and tactile conditions, but differed in the auditory condition. In
other words when both kinds of information were present, the tactile one played the strongest
role in determining experimental performance. Roughness estimates were shown to increase as
both the distance between grooves and the width of the grooves decreased. Additionally rough-
ness estimates increased as the force exerted by the finger on the surface increased, and as the
speed of the movement of the fingers decreased. The effect of the force on roughness estimates
in the auditory condition was however not constant across subjects. A speculative discussion
concerning the relative role of pitch and loudness in determining the estimates is provided by the
author, although no acoustical analyses of the experimental stimuli are provided. More recent
research by Lederman and coworkers Lederman et al. [2002] has focused on surface roughness
perception when the surface is explored using a rigid probe rather than with the bare skin. It
is known that in this case the role of vibratory texture coding is different, because the probe
provides a rigid link between the skin and the surface. When people feel a surface with a rigid
probe, vibratory roughness perception occurs. This study investigates relative contributions of
tactile and auditory information to judgments of surface roughness. The haptic and auditory
stimuli were obtained by asking subjects to use a probe to explore a set of plates with periodic
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textures of varying interelement spacings. Experiments were run using three modality condi-
tions (touch-only, audition-only, and touch+audition), and results showed that, although tactual
dominance is still found, sound plays a more relevant role when using a probe than in the case of
direct contact with bare fingers. The authors argue that this may be due not only to the different
interaction conditions, but also to the simple fact that the amplitude of the accompanying sounds
is considerably greater for probe-based exploration than for bare skin contact.

Patterned sources

Warren and coworkers Warren and Verbrugge [1988] have investigated acoustic invariants in
bouncing and breaking events. According to the terminology adopted by the ecological approach
to perception, we distinguish between two classes of invariants (i.e., higher-order acoustical
properties) that specify the sound generating event. Structural invariants specify the properties
of the objects, while transformational invariants specify their style of change. Warren and
Verbrugge investigated the nature of the structural invariant that allow identification of breaking
and bouncing events. On the basis of a physical analysis of these two kinds of events the
authors hypothesized that the nature of these invariants was essentially temporal, static spectral
properties having no role in the identification of breaking and bouncing events. Experimental
stimuli were generated by dropping one of three different glass objects on the floor from different
heights, so that for each of the objects a bouncing event and a breaking one were recorded. Once
the ability of participants to correctly identify these two types of events was assessed with the
original stimuli, two further experiments were conducted using synthetic stimuli. The bouncing
event was synthesized by superimposing four trains of damped quasi-periodic pulses generated
using, for each one, a recording from one of four different bouncing glass tokens. These four
sequences had the same damping. The breaking event was synthesized by superimposing the
same four damped quasi-periodic sequences, but using a different damping coefficient for each of
them (in the second experiment the breaking stimuli were preceded by a 50 ms noise burst of the
original breaking sound). Identification performance was extremely accurate in all cases, despite
the strong simplifications of the spectral and temporal profile of the acoustical signal. Therefore
the transformational invariants for bouncing was identified as a single damped quasi-periodic
sequence of pulses, while that for breaking was identified as a multiple damped quasi-periodic
sequence of pulses.

Repp Repp [1987] reports a study on auditory perception of hands clapping. Repp’s
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work is an extension of the so called motor theory of speech perception to the investigation
of a non-speech communicative sound: claps. In particular Repp hypothesized the subjects’
ability to recognize the size and the configuration of clapping hands on the basis of the auditory
information. Recognition of hands size was also related to recognition of the gender of the
clapper, given that male have in general bigger hands than females. Several clapping sounds
were recorded from different clappers. In the first experiment clapper gender and hand size
recognition were investigated indirectly, as participants were asked to recognize the identity of
the clapper. Overall clapper recognition was not good, although listeners performance in the
identification of their own claps was much better. Gender recognition was barely above chance.
Gender identification appeared to be guided by misconceptions: faster, higher-pitched and fainter
claps were judged to be produced by females and vice-versa. In the second experiment, subjects
had to recognize the configuration of the clapping hands. Overall subjects were found to be able
to recover correctly the hand configuration from sound. Although hands configuration was a
determinant of the clapping sound spectrum, the best predictor of performance was found to be
clapping rate, spectral variables having only a secondary role.

Li et al. Li et al. [1991] studied gender recognition in walking sounds. Walking sounds
of seven females and seven males were recorded. Subjects were asked to categorize the gender
of the walker on the basis of a four step walking sequence. Results show recognition levels
well above chance. Several anthropometric measures were collected on the walkers. Male and
female walkers were found to differ in height, weight and shoe size. Spectral and duration
analyses were performed on the recorded walking excerpts. Duration analysis indicated that
female and male walkers differed in respect to the relative duration of the stance and swing
phases, but not inrespect to the walking speed. Nonetheless judged maleness was significantly
correlated with the latter of these two variables, but not with the former. Several spectral
measures were derived from the experimental stimuli: spectral centroid, skewness, and kurtosis,
spectral mode, average spectral level, and low and high spectral slopes. Two components where
then derived by applying a principal components analysis on the spectral predictors. These
components were used as predictors for both physical and judged gender. Overall male walkers
were characterized by a lower spectral centroid, mode and high frequency energy than females,
and by higher values for skewness, kurtosis and low-frequency slope. The same tendencies were
found when the two components were used as predictors for judged gender. Results gathered
from the analysis of the relationship between the acoustical and the perceptual levels were then
tested in a further experiment. Stimuli were generated by manipulating the spectral mode of the
two most ambiguous walking excerpts (spectral slopes too were altered, but manipulation of this
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feature was not completely independent of the manipulation of the spectral mode). Consistently
with previous analyses, the probability of choosing the response “male” was found to decrease
as spectral mode increased. A final experiment showed that judged gender could be altered by
having a walker wear shoes of the opposite gender.

Unlike other studies on the perception of environmental sounds, the work of Gygi et

al. Gygi et al. [2004] does not focus on a specific event or feature. Instead the authors use for
their experiments a large (70) and varied catalog of sounds, which covers “nonverbal human
sounds, animal vocalizations, machine sounds, the sounds of various weather conditions, and
sounds generated by human activities”. Patterned, compound, and hybrid sounds (according
to the terminology used by Gaver Gaver [1993b]) are included, e.g., beer can opening, bowling,
bubbling, toilet flushing, etc. The experiments apply to non-verbal sound an approach used
in early studies of speech perception, namely the use of low-, high-, and bandpass filtered
speech to assess the importance of various frequency regions for speech identification. The
third experiment (see abstract) is perhaps the most interesting one. The authors seem to follow
an approach already suggested by Gaver: “[. . . ] if one supposes that the temporal features
of a sound are responsible for the perception of some event, but that its frequency makeup
is irrelevant, one might use the amplitude contour from the original sound to modify a noise
burst.” Gaver [1993a].

The results show that identifiability is heavily affected by experience and that it has a
strong variability between sounds. The authors try to quantify the relevance of tem temporal
structures through a selection of time- and frequency-domain parameters, including statistics of
the envelope (a quantitative meaasure of the envelope “roughness”), autocorrelation statistics
(to reveal periodicities in the waveform), and moments of the longterm spectrum (to see if some
spectral characteristics were preserved when the spectral information was drastically reduced.).
Correlation of these parameters with the EMN identification results shows that three variables
are mainly used by every group of listeners in every experimental condition: number of auto-
correlation peaks, ratio of burst duration to total duration, cross-channel correlation. These are
all temporal features, reflecting periodicity, amount of silence, and coherence of envelope across
channels.
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7.3 Multimodal perception and interaction

7.3.1 Combining and integrating auditory information

Humans achieve robust perception through the combination and integration of information
from multiple sensory modalities. According to the intersensory integration view of perceptual
development, multisensory perception emerges gradually during the first months of life, and
experience significantly shapes multisensory functions. By contrast, according to the intersensory
differentiation view, sensory systems are fused at birth, and the single senses differentiate later.
Empirical findings in newborns and young children have provided evidence for both views. In
general experience seems to be necessary to fully develop multisensory functions.

Sensory combination and integration

Looking at how multisensory information is combined, two general strategies can be identi-
fied Ernst and Bülthoff [2004]: the first is to maximize information delivered from the different
sensory modalities (sensory combination). The second strategy is to reduce the variance in the
sensory estimate to increase its reliability (sensory integration).

Sensory combination describes interactions between sensory signals that are not redun-
dant. That is, they may be in different units, coordinate systems, or about complementary aspects
of the same environmental property. Disambiguation and cooperation are examples for two such
interactions: if a single modality is not enough to come up with a robust estimate, information
from several modalities can be combined. For example, for object recognition different modalities
complement each other with the effect of increasing the information content.

By contrast, sensory integration describes interactions between redundant signals. That
is, to be integrated, the sensory estimates must be in the same units, the same coordinates and
about the same aspect of the environmental property. Ernst and Bülthoff Ernst and Bülthoff
[2004] illustrate this concept with an example: when knocking on wood at least three sensory
estimates about the location (L) of the knocking event can be derived: visual (V), auditory (A)
and proprioceptive (P). In order for these three location signals to be integrated they first have
to be transformed into the same coordinates and units. For this, the visual and auditory signals
have to be combined with the proprioceptive neck-muscle signals to be transformed into body
coordinates. The process of sensory combination might be non-linear. At a later stage the three
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signals are then integrated to form a coherent percept of the location of the knocking event.

There are a number of studies that show that vision dominates the integrated percept
in many tasks, while other modalities (in particular audition and touch) have a less marked
influence. This phenomenon of visual dominance is often termed visual capture. As an example,
it is known that in the spatial domain vision can bias the perceived location of sounds whereas
sounds rarely influence visual localization. One key reason for this asymmetry seems to be that
vision provides more accurate location information.

In general, however, the amount of cross-modal integration depends on the features to
be evaluated or the tasks to be accomplished. The modality precision or modality appropriateness

hypothesis by Welch and Warren Welch and Warren [1986] is often cited when trying to explain
which modality dominates under what circumstances. These hypotheses state that discrepancies
are always resolved in favour of the more precise or more appropriate modality. In spatial tasks,
for example, the visual modality usually dominates, because it is the most precise at determining
spatial information. For temporal judgments,however, the situation is reversed and audition,
being the more appropriate modality, usually dominates over vision. In texture perception tasks
haptics dominates on other modalities, and so on.

With regard to this concept, Ernst and Bülthoff Ernst and Bülthoff [2004] note thatthe
terminology modality precision and modality appropriateness is misleading because it is not the
modality itself or the stimulus that dominates. Rather, the dominance is determined by the
estimate and how reliably it can be derived within a specific modality from a given stimulus.
Therefore, the term estimate precision would probably be more appropriate. The authors also
list a series of questions for future research, among which one can find “What are the temporal
aspects of sensory integration?”. This is a particularly interesting question, since, as already
noted, audition provides salient temporal information.

Auditory capture and illusions

In psychology, there is a long history of studying intermodal conflict and illusions to uncover
the principles of perception. Studying multisensory illusions is a promising approach for in-
vestigating multisensory integration. is frequently studied using intermodal conflict, as in the
ventriloquist effect whereby the perceived location of a sound shifts towards a visual stimulus
presented at a different position. Much of the multisensory literature has focused on spatial in-
teractions, as in the ventriloquist effect whereby the perceived location of a sound shifts towards
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a visual stimulus presented at a different position. Identity interactions are also studied, such
as the already mentioned McGurk effect McGurk and MacDonald [1976]. In the McGurk effect,
what is being heard is influenced by what is being seen (for example, when hearing /ba / but
seeing the speaker say /ga / the final perception may be /da / ).

As already noted, the visual modality does not always win in such crossmodal tasks. In
particular, it is also the case that the senses can interact in time, that is, not where or what is
being perceived but when it is being perceived. The temporal relationships between inputs from
the different senses play an important role in multisensory integration. Indeed, a window of
synchrony between auditory and visual events is crucial to spatial ventriloquism, as the effect
disappears when the audio-visual asynchrony exceeds approximately 300 ms. This is also the
case in the McGurk effect, which fails to occur when the audio-visual asynchrony exceeds 200-300
ms.

There is a variety of crossmodal effects that demonstrate that, outside the spatial domain,
audition can bias vision. For example, Shams et. al Shams et al. [2002] presented subjects with a
briefly flashed visual stimulus that was accompanied by one, two or more auditory beeps. There
was a clear influence of the number of auditory beeps on the perceived number of visual flashes.
That is, if there were two beeps subjects frequently reported seeing two flashes when only one
was presented. Maintaining the terminology above, this effect may be called auditory capture.

Another recent study Morein-Zamir et al. [2003] has tested a related hypothesis: that
auditory events can alter the perceived timing of target lights. Specifically, four experiments
reported in Morein-Zamir et al. [2003] investigated whether irrelevant sounds can influence the
perception of lights in a visual temporal order judgment task, where participants judged which
of two lights appeared first. The results show that presenting one sound before the first light and
another one after the second light improves performance relative to baseline (sounds appearing
simultaneously with the lights), as if the sounds pulled the perception of lights further apart in
time. More precisely, the performance improvement results from the second sound trailing the
second light. On the other hand, two sounds intervening between the two lights lead to a decline
in performance, as if the sounds pulled the lights closer together. These results demonstrate a
temporal analogue of the spatial ventriloquist effect, where visual events can alter the perceived
location of target sounds.

These capture effects, or broadly speaking, these integration effects, are of course not only
limited to vision and audition. In principle they can occur between any modalities (even within
modalities).
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Some authors have investigated whether audition can influence tactile perception similarly
to what Shams et al. have done for vision and audition, and found that an incompatible number
of auditory beeps can increase or decrease the number of simultaneously felt taps.

Hötting and Röder Hötting and Röder [2004] report upon a series of experiments where
a single tactile stimulus was delivered to the right index finger of subjects, accompanied by
one to four task-irrelevant tones. Participants (both sighted and congenitally blind) had to
judge the number of tactile stimuli. As a test of whether possible differences between sighted
and blind people were due to the availability of visual input during the experiment, half of the
sighted participants were run with eyes open (sighted seeing) and the other half were blindfolded
(sighted blindfolded). The first tone always preceded the first tactile stimulus by 25 ms and
the time between the onsets of consecutive tones was 100 ms. Participants were presented with
trials made of a single tactile stimulus accompanied by no, one, two, three, or four tones. All
participants reported significantly more tactile stimuli when two tones were presented than when
no or only one tone was presented. Sighted participants showed a reliable illusion for three and
four tones as well, while blind participants reported a lower number of perceived tactile stimuli
than sighted seeing or sighted blindfolded participants. These results extend the finding of the
auditory-visual illusion established by Shams et al. Shams et al. [2002] to the auditory-tactile
domain. Moreover, the results (especially the discrepancies between sighted and congenitally
blind participants) suggest that interference by a task-irrelevant modality is reduced if processing
accuracy of the task-relevant modality is high.

Bresciani et al. Bresciani et al. [2005] have conducted a very similar study, and investigated
whether the perception of tactile sequences of two to four taps delivered to the index fingertip
can be modulated by simultaneously presented sequences of auditory beeps when the number
of beeps differs (less or more) from the number of taps. This design allowed to systematically test
whether task-irrelevant auditory signals can really modulate (influence in both directions) the
perception of tactile taps, or whether the results of Hötting and Röder Hötting and Röder [2004]
merely reflected an original but very specific illusion. In the first experiment, the auditory and
tactile sequences were always presented simultaneously. Results demonstrate that tactile tap
perception can be systematically modulated by task-irrelevant auditory inputs. Another interest-
ing point is the fact that subjects responses were significantly less variable when redundant tactile
and auditory signals were presented rather than tactile signals alone. This suggests that even
though auditory signals were irrelevant to the task, tactile and auditory signals were probably
integrated. A second experiment tested whether the auditory and tactile stimuli are integrated



7.3. Multimodal perception and interaction 301

when the timing between auditory and tactile sequences is manipulated. The sequences of beeps
and taps were always similar, but for some timing conditions they were presented in temporal
asynchrony. Results show that the auditory modulation of tactile perception was weaker when
the auditory stimuli were presented immediately before the onset or after the end of the tactile
sequences. This modulation completely vanished with a 200 ms gap between the auditory and
tactile sequences. Shams et al. Shams et al. [2002] found that the temporal window in which
audition can bias the perceived number of visual flashes is about 100 ms. These results suggest
that the temporal window of auditory-tactile integration might be wider than for auditory-visual
integration. One more observed effect was that the auditory sequence biased tactile perception
when presented immediately after the tactile sequence, but not when presented immediately
before. The authors regard this as a reasonable result: since the tactile sensory signals from the
fingertip take longer to reach the brain than the auditory signals coming from the ears, the tactile
stimulus has to precede the auditory one in order for the two to be centrally represented as
simultaneous.

These studies provide evidence of the fact that the more salient (or reliable) a signal is, the
less susceptible to bias this signal should be. In the same way, the more reliable a biasing signal is,
the more bias it should induce. Therefore, the fact that auditory signals can bias both visual and
tactile perception probably indicates that, when counting the number of events presented in a
sequence, auditory signals are more reliable than both visual and tactile signals. When compared
to the studies by Shams et al. Shams et al. [2002], the effects observed on tactile perception are
relatively small. This difference in the magnitude of the auditory-evoked effects likely reflects a
higher saliency of tactile than visual signals in this kind of non-spatial task.

Other studies have concentrated on auditory-tactile integration in surface texture percep-
tion. Studies by Lederman and coworkers Lederman [1979], Lederman et al. [2002], already
mentioned in the previous section, have shown that audition had little influence on texture per-
ception when participants touched the stimulus with their fingers Lederman [1979]. However,
when the contact was made via a rigid probe, resulting in an increase of touch-related sound and
a degradation of tactile information, auditory and tactile cues were integrated Lederman et al.
[2002]. These results suggest that although touch is mostly dominant in texture perception, the
degree of auditory-tactile integration can be modulated by the reliability of the single-modality
information

In a related study, Guest et al. Guest et al. [2002] have focused on audio-tactile interactions
in roughness perception. In their experimental setup, participants were required to make forced-
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choice discrimination responses regarding the roughness of abrasive surfaces which they touched
briefly. Texture sounds were captured by a microphone located close to the manipulated surface
and subsequently presented through headphones to the participants in three different conditions:
veridical (no processing), amplified (12dB boost on the 2 − 20kHz band), and attenuated (12dB
attenuation in the same band). The authors investigated two different perceptual scales: smooth-
rough, and moist-dry. Analysis of discrimination errors verified that attenuating high frequencies
led to a bias towards an increased perception of tactile smoothness (or moistness), and conversely
the boosted sounds led to a bias towards an increased perception of tactile roughness (or dryness).
This work is particuarly interesting from a sound-design perspective, since it investigate the
effects of a non-veridical auditory feedback (not only the spectral envelope is manipulated, but
sounds are picked up in the vicinity of the surface and are therefore much louder than in natural
listening conditions).

7.3.2 Perception is action

Embodiment and enaction

According to traditional mainstream views of perception and action, perception is a process in
the brain where the perceptual system constructs an internal representation of the world, and
eventually action follows as a subordinate function. This simple view of the relation between
perception and action makes then two assumptions. First, the causal flow between perception
and action is primarily one-way: perception is input from world to mind, action is output from
mind to world, and thought (cognition) is the mediating process. Second, perception and action
are merely instrumentally related to each other, so that each is a means to the other. If this kind
of “input-output” picture is right, then it must be possible, at least in principle, to disassociate
capacities for perception, action, and thought.

Although everyone agrees that perception depends on what takes place in the brain, and
that very likely there are internal representations in the brain (e.g. content-bearing internal
states), more recent theories have questioned such a modular decomposition in which cognition
interfaces between perception and action. The ecological approach discussed in section 7.2
reject the one-way assumption, but not the instrumental aspect of the traditional view, so that
perception and action are seen as instrumentally interdependent. Others argue that a better
alternative is to reject both assumptions: the main claim of these theories is that it is not possible
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Figure 7.2: A cartoon representation of traditional views of the perception-action functions as a
causal one-way flow.

(not even truly conceivable) to disassociate perception and action schematically, and that every
kind of perception is intrinsically active and thoughtful. Perception is not a process in the brain,
but a kind of skillful activity on the part of the animal as a whole. As stated by Nöe Noë [2005],
blind creatures may be capable of thought, but thoughtless creatures could never be capable of
sight, or of any genuine content-bearing perceptual experience. In other words, only a creature
with certain kinds of bodily skills (e.g. a basic familiarity with the sensory effects of eye or hand
movements, etc.) could be a perceiver.

One of the most influential contributions in this direction is due to Varela and coworkers
(see O’Regan and Noë [2001] for a detailed review of other works based on similar ideas). Varela,
Thompson and Rosch Varela et al. [1991] presented an “enactive conception” of experience ac-
cording to which experience is not something that occurs inside the animal, but is something
the animal enacts as it explores the environment in which it is situated. In this view, the subject
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of mental states is taken to be the embodied, environmentally situated animal. The animal and
the environment form a pair in which the two parts are coupled and reciprocally determining.
Perception is thought of in terms of activity on the part of the animal. The term “embodied”
is used by the authors as a mean to highlight two points: first, cognition depends upon the
kinds of experience that come from having a body with various sensorimotor capacities. Second,
these individual sensorimotor capacities are themselves embedded in a biological, psychological,
and cultural context. Sensory and motor processes, perception and action, are fundamentally
inseparable in live cognition.

O’Regan and Nöe O’Regan and Noë [2001] have proposed a closely related approach,
according to which perception consists in exercising an exploratory skill. The authors illustrate
their approach with an example: the sensation of softness that one might experience in holding
a sponge consists in being aware that one can exercise certain practical skills with respect to
the sponge: one can for example press it, and it will yield under the pressure. The experience
of softness of the sponge is characterized by a variety of such possible patterns of interaction
with the sponge. O’Regan and Nöe term sensorimotor contingencies the laws that describe these
interactions. When a perceiver knows, in an implicit, practical way, that at a given moment he
is exercising the sensorimotor contingencies associated with softness, then he is in the process of
experiencing the sensation of softness.

O’Regan and Nöe O’Regan and Noë [2001] then classify sensory inputs according to two
criteria, i.e. corporality and alerting capacity. Corporality is the extent to which activation in a
neural channel systematically depends on movements of the body. Sensory input from sensory
receptors like the retina, the cochlea, and mechanoreceptors in the skin possesses corporality,
because any body motion will generally create changes in the way sensory organs are positioned
in space, and consequently in the incoming sensory signals (the situation is less clear for the
sense of smell, but sniffing, blocking the nose, moving the head, do affect olfactory stimulation).
Proprioceptive input from muscles also possesses corporality, because there is proprioceptive
input when muscle movements produce body movements. The authors argue that corporality
is one important factor that explains the extent to which a sensory experience will appear to
an observer as being truly sensory, rather than non-sensory, like a thought, or a memory. The
alerting capacity of sensory input as the extent to which that input can cause automatic orienting
behaviors that peremptorily capture the organism s cognitive processing resources. Vision, touch,
hearing, and smell have not only high corporality but also high alerting capacity, provided by the
fact that sudden changes in visual, tactile, auditory or olfactory stimulation provoke immediate
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orienting behaviors that peremptorily modify cognitive processing. With high corporality and
high alerting capacity, vision, touch, hearing and smell have strong phenomenal presence. This
is in accordance with the usual assumption that they are the prototypical sensory modalities.

A possible objection to the definitions of perception and action given above is that most
sensations can be perceived without any exploratory skill being engaged. For example, having
the sensation of red or of a bell ringing does not seem to involve the exercising of skills. Such an
objection can be overcome by realizing that sensations are never instantaneous, but are always
extended over time, and that at least potentially, they always involve some form of activity.
O’Regan and Nöe refer in O’Regan and Noë [2001] to a number of experiments, especially in the
domain of visual perception, that support this idea Experiments on “change blindness” present
observers with displays of natural scenes and ask them to detect cyclically repeated changes (e.g.,
large object shifting, changing colors, and so on). Under normal circumstances a change of this
type would create a transient signal in the visual system that would be detected by low-level
visual mechanisms and would attract attention to the location of the change. However in the
change blindness experiments conditions were arranged such that these transients were hidden
by superimposing a brief global flicker over the whole visual field at the moment of the change.
The results of the experiments showed that in many cases observers have great difficulty seeing
changes, even when the changes are extremely large (and are perfectly visible to someone who
knows what they are). Such results contrast with the subjective impression of “seeing everything”
in an observed scene or picture. O’Regan and Nöe regards them as a support to the view that
an observer sees the aspects of a scene which he/she is currently “visually manipulating”, which
makes it reasonable that only a subset of scene elements that share a particular scene location can
be perceived at a given moment.

Again in the domain of visual perception, Nöe Noë [2005] discuss the concept of “experi-
ential blindness” and reports upon cases where this phenomenon has been observed. According
to Nöe there are, broadly speaking, two different kinds of blindness: blindness due to damage
or disruption of the sensitive apparatus (e.g., caused by cataracts, by retinal disease or injury, or
by brain lesion in the visual cortex), and blindness that is not due to the absence of sensation or
sensitivity, but rather to the person’s inability to integrate sensory stimulation with patterns of
movement and thought. The latter is termed experiential blindness because it occurs despite the
presence of normal visual sensation.

As an example of the occurrence of experiential blindness, Nöe considers attempts to
restore sight in congenitally blind individuals whose blindness is due to cataracts impairing
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the eye’s sensitivity by obstructing light on its passage to the retina. The medical literature
reports that surgery restores visual sensation, at least to a significant degree, but that it does not
restore sight. In the period immediately after the operation, patients suffer blindness despite rich
visual sensations. This clearly contrasts with the traditional input-output picture described at
the beginning of this section, according to which removing the cataract and letting in the light
should enable normal vision.

A related phenomenon is that of blindness caused by paralysis. Normally the eyes are
in nearly constant motion, engaging in sharp movements several times a second. If the eyes
cease moving, they lose their receptive power. A number of studiies are reported in Noë [2005],
which show that images stabilized on the retina fade from view. This is probably an instance of
the more general phenomenon of sensory fatigue thanks to which we do not continuously feel
our clothing on our skin, the glasses resting on the bridge of our nose, or a ring on our finger.
This suggests that some minimal amount of eye and body movement is necessary for perceptual
sensation.

Audition and sensory substitution

According to the theories discussed above, the quality of a sensory modality does not derive
from the particular sensory input channel or neural activity involved in that specific modality,
but from the laws of sensorimotor skills that are exercised. The difference between hearing and
seeing amounts to the fact that, among other things, one is seeing if there is a large change in
sensory input when blinking; on the other hand, onee is hearing if nothing happens when one
blinks but there is a left/right difference when one turns the head, and so on. This line of reasoning
implies that it is possible to obtain a visual experience from auditory or tactile input, provided
the sensorimotor laws that are being obeyed are the laws of vision.

The phenomenon of sensory substitution is coherent with this view. Perhaps the first studies
on sensory substitution are due to Bach-y-Rita who, starting from 1967 has been experimenting
with devices to allow blind people to “see” via tactile stimulation provided by a matrix of
vibrators connected to a video camera. A comprehensive review of this research stream can be
found in Kaczmarek et al. [1991].

The tactile visual substitution systems developed by Bach-y-Rita and coworkers use ma-
trices of vibratory or electrical cutaneous stimulators to represent the luminance distribution
captured by a camera on a skin area (the back, the abdomen, the forehead or the fingertip). Note
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that due to technical reasons and to bandwidth limitations of tactile acuity, these devices have
a rather poor spatial resolution, being generally matrices of not more than 20 × 20 stimulators.
One interesting result from early studies was that blind subjects were generally unsuccessful
in trying to identify objects placed in front of a fixed camera. It was only when the observer
was allowed to actively manipulate the camera that identification became possible. Although
subjects initially located the stimulation on the skin area being stimulated, with practice they
started to locate objects in space (although they were still able to feel local tactile sensation). This
point support the idea that the experience associated with a sensory modality is not wired into
the neural hardware, but is rather a question of exercising sensorimotor skills: seeing constitutes
the ability to actively modify sensory impressions in certain law-obeying ways.

There is a certain amount of studies that investigates sensory substitution phenomena in
which audition is involved. One research stream investigates the use of echolocation devices
to provide auditory signals to a user, depending on the direction, distance, size, and surface
texture of nearby objects. Such devices have been extensively studied as prostheses for the blind
As an example, Ifukube et al. Ifukube et al. [1991] designed an apparatus in which a frequency-
modulated ultrasound signal (with carrier and modulating frequencies in a similar range as that
produced by bats for echolocation) is emitted from a transmitting array with broad directional
characteristics in order to detect obstacles. Reflections from obstacles are picked up by a two-
channel receiver and subsequently digitally downconverted by a 50:1 factor, resulting in signals
that are in the audible frequency range and can be presented binaurally through earphones. The
authors evaluated the device through psychophysical experiments in order to establish whether
obstacles may be perceived as localized sound images corresponding to the direction and the
size of the obstacles. Results showed that the auditory feedback was succesfully used for the
recognition of small obstacles, and also for discriminating between several obstacles at the same
time without any virtual images.

While such devices cannot provide a truly visual experience, they nevertheless provide
users with the clear impression of things being “out in front of them”. In this sense, these devices
can be thought as variants of the blind person’s cane. Blind persons using a cane sense the
external environment that is being explored through the cane, rather than the cane itself. The
tactile sensations provided by the cane are “relocated” onto the environment, and the cane itself is
forgotten or ignored. O’Regan and Nöe O’Regan and Noë [2001] prefer to say that sensations in
themselves are situated nowhere, and that the location of a sensation is an abstraction constructed
in order to account for the invariance structure of the available sensorimotor contingencies.
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A related research was conducted by Meijer Meijer [1992], who developed an experimental
system for the conversion of a video stream into sound patterns, and investigated possible
applications of such a device as a vision substitution device for the blind. According to the
image-to-sound mapping chosed by Meijer, a N×M pixel image is sampled from the video stream
at a given rate, and converted into a spectrogram in which grey level of the image corresponds
to partial amplitude. Therefore the device potentially conveys more detailed information than
the one developed by Ifukube et al. Ifukube et al. [1991],since it provides a representation of
the entire scene rather than simply detecting obstacles and isolated objets. In this sense, the
approach followed by Mejer resembles closely the work by Bach-y-Rita, except that audition
instead of tactile stimulation is used to substitute for vision.

Although from a purely mathematical standpoint the chosen image-to-sound mapping
ensures the preservation of visual information to a certain extent, it is clear that perceptually such
a mapping is highly abstract and a priori completely unintuitive. Accordingly, Meijer remarks
in Meijer [1992] that the actual perception of these sound representations remains to be evaluated.
However, it must also be noted that users of such devices sometimes testify that a transfer of
modalities indeed takes place1. Again, this finding is consistent with the sensorimotor theories
presented above, since the key ingredient is the possibility for the user to actively manipulate the
device.

7.4 Sound modeling for multimodal interfaces

This section focuses on applications that involve direct interaction of an operator with virtual
objects and environments: interactive computer animation and virtual reality applications. Mu-
sical interfaces are an interesting special case to which we devote some attention. The general
topic of the use of sound in interfaces is addressed in chapter 9.

7.4.1 Interactive computer animation and VR applications

Various applications of virtual reality and teleoperation:

1Pat Fletcher reported her experience at the Tucson 2002 Consciousness Conference, and explicitly de-
scribed herself as seeing with the visual-to-auditory substitution device. The presentation is available at
http://www.seeingwithsound.com/tucson2002f.ram

http://www.seeingwithsound.com/tucson2002f.ram
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Medicine; surgical simulators for medical training; manipulating micro and macro robots
for mini- mally invasive surgery; remote diagnosis for telemediclne; aids for the disabled
such as haptic interfaces for the blind.

Entertainment: video games and simulators that enable the user to feel and manipulate
virtual solids, fluids. tools, and avatars.

Education., giving students the feel of phenomena at nano, macro, or astronomical scales;
what if scenarios for non-terrestrial physics; experiencing complex data sets.

Industry: integration of haptics into CAD systems such that a designer can freely manipu-
late the mechanical components of an assembly in an immersive environment.

Graphic arts: virtual art exhibits, concert rooms, and museums in which the user can log
in remotely to play the musical instruments, and to touch and feel the haptic attributes of
the displays; individual or co-operative virtual sculpturing across the Internet.

The need for multisensory feedback

Most of the virtual environments (VEs) built to date contain visual displays, primitive haptic
devices such as trackers or gloves to monitor hand position, and spatialized sound displays. To
realize the full promise of VEs, accurate auditory and haptic displays are essential. Being able
to hear, touch, and manipulate objects in an environment, in addition to seeing them, provides a
sense of immersion in the environment that is otherwise not possible. It is quite likely that much
greater immersion in a VE can be achieved by the synchronous operation of even simple haptic
and auditory displays with a visual one, than by large improvements in the fidelity of the visual
display alone.

Multimodal VEs that combine the visual, haptic, and auditory sensory information are
essential for designing immersive virtual worlds. It is known that an individual’s perceptual
experience can be influenced by interactions among various sensory modalities. For example, in
real environments, visual information has been shown to alter the haptic perception of object size,
orientation, and shape Welch and Warren [1986]. An important implication to virtual environ-
ments is that by skewing the relationship between the haptic and visual and/or auditory displays,
the range of object properties that can be effectively conveyed to the user can be significantly
enhanced. Based on these considerations, many authors (see e.g. Hahn et al. Hahn et al. [1998]



7.4. Sound modeling for multimodal interfaces 310

and Srinivasan and Basdogan Srinivasan and Basdogan [1997]) emphasize the need to make a
more concerted effort to bring the three modalities together in VEs.

According to Hahn et al. Hahn et al. [1998], the problem of generating effective sounds in
VE can be divided into three sub-problems: sound modeling, sound synchronization, and sound
rendering. The first problem has long been studied in the field of computer music (see also
Chapter 6). However, the primary consideration in VE is the effective parameterization of sound
models so that the parameters being generated from the motion can be mapped and synchronized
to them. Finally, sound rendering refers to the process of generating sound signals from their
models within a given environment, which is in principle very much equivalent to the process
of generating images from their geometric models: the sound energy being emitted needs to be
traced within the environment, and the sound reaching the listener then needs to be processed
to take into account the listener effects (e.g. via filtering with Head Related Transfer Functions).
The whole process of rendering sounds can be seen as a rendering pipeline analogous to image
rendering pipeline.

It has to be noted that until recently the primary focus for sound generation in VEs
has been in spatial localization of sounds. On the contrary, research about the links between
object motion/interaction and the resulting sounds has been minimal. In section 7.4.2 we will
concentrate on this latter topic.

Learning the lessons from perception studies

Given the needs and the requirements addressed in the previous section, many lessons can be
learned from the studies in direct (ecological) perception and in the action-perception loop that
we have reviewed in the first part of this chapter.

The concept of “global array” proposed by Stoffregen Stoffregen and Bardy [2001] is a
very powerful one: the global array provides information that can optimize perception and
performance, and that is not available in any other form of sensory stimulation. Humans
may detect informative global array patterns, and they may routinely use this information for
perception and control, in both VE and daily life. According to Stoffregen and Bardy [2001],
in a sense VE designers do not need to make special efforts to make the global array available
to users: the global array already is available to users. Rather than attempting to create the
global array, designers need to become aware of the global array that already exists, and begin
to understand how multisensory displays structure the global array. The essential aspect is the



7.4. Sound modeling for multimodal interfaces 311

initial identification of the relevant global array parameters, which makes it possible to construct
laboratory situations in which this parameter can be manipulated, and in which their perceptual
salience and utility for performance in virtual environments can be evaluated.

For the specific case of auditory information, the description of sound producing events
by Gaver Gaver [1993a]— provides a framework. Gaver emphasizes that, since it is often
difficult to identify the acoustic information for events from acoustic analysis alone, it is useful
to supplement acoustic analyses with physical analyses of the event itself. Studying the physics
of sound-producing events is useful both in suggesting relevant source attributes that might be
heard and in indicating the acoustic information for them. Resynthesis, then, can be driven by
the resulting physical simulations of the event.

Gygi et al. Gygi et al. [2004] also suggest that the results reported in their work may be
useful to investigators and applications developers in VEs

The effects of multimodal interactions on human perception need to be investigated in
more detail through a study of normal and altered relationships among haptic, visual, and
auditory displays. This will then lead to a rational basis upon which multimodal VEs can be
designed and implemented.

7.4.2 Sound modeling approaches

Most sounds currently used in VE are sampled from real sounds or synthesized using “tradi-
tional” sound synthesis techniques (e.g. additive, subtractive, FM), which are based on signal
theoretic parameters and tools. While deep research has established a close connection to con-
ventional musical terms, such as pitch, timbre or loudness, the research in ecological acoustics
reported in section 7.2 points out that the nature of everyday listening is rather different and that
auditory perception delivers information which goes beyond attributes of musical listening.

A second problem with these approaches is that the sounds cannot be easily parameterized
so that they may be correlated to motions. Parameterizing real recorded sounds by their attributes
such as amplitude and pitch is not a trivial task, since it corresponds to a sort of “reverse
engineering” problem where one tries to determine how the sounds were generated starting
from the sounds themselves.

Finally, physically-based models allow for a high degree of interactivity, since the physical
parameters of the sound models can be naturally controlled by the gestures and the actions of a
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user. This remark establishes a strong link with the studies in action-perception loop described
in section 7.3.2.

For all these reasons, it would be desirable to have at disposal sound modeling techniques
that incorporate complex responsive acoustic behaviors and can reproduce complex invariants of
primitive features: physically-based models offer a viable way to synthesize naturally behaving
sounds from computational structures that respond to physical input parameters.

Physical models are widely developed in the computer music community, especially using
the waveguide simulation paradigm, but their main application has been the faithful simulation
of existing musical instruments. The literature on physically-based sound modeling is reviewed
in chapter 6.

Contact sounds

As already remarked in section 7.2 an important class of sound events is that of contact sounds
between solids, i.e. sounds generated when objects come in contact with each other (collision,
rubbing, etc.: see also figure 7.1). Various modeling approaches have been proposed in the
literature.

Van den Doel et al. van den Doel and Pai [1998], van den Doel et al. [2001] proposed modal
synthesis Adrien [1991] as an efficient yet accurate framework for describing the acoustic proper-
ties of objects. Contact forces are used to drive the modal synthesizer, under the assumption that
the sound-producing phenomena are linear, thus being representable as source-filter systems.

yk(t) =
N
∑

n=1

anke
−dnt sin(2π fnt) (7.1)

The modal representation of a resonating object is naturally linked to many ecological dimensions
of the corresponding sounds. The frequencies and the amount of excitation of the modes of a
struck object depend on the shape and the geometry of the object. The material determines to a
large extent the decay characteristics of the sound. The amplitudes of the frequency components
depend on where the object is struck (as an example, a table struck at the edges makes a different
sound than when struck at the center). The amplitude of the emitted sound is proportional to
the square root of the energy of the impact.

The possibility of linking the physical model parameter to ecological dimensions of the
sound has been demonstrated in Klatzky et al. [2000], already discussed in Section 7.2. In this
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work, the modal representation proposed in van den Doel and Pai [1998] has been applied to the
synthesis of impact sounds with material information.

An analogous modal representation of resoating objects was also adopted by Avanzini
et al. Avanzini et al. [2003]. The main difference with the above mentioned works lies in the
approach to contact force modeling. While van den Doel and coworkers adopt a feed-forward
scheme in which the interacting resonators are set into oscillation with driving forces that are
externally computed or recorded, the models proposed in Avanzini et al. [2003] embed direct
computation of non-linear contact forces. Despite the complications that arise in the sound
models, this approach provides access to (and control over) other ecological dimensions of the
sound events. As an example, the impact model used in Avanzini et al. [2003], and originally
proposed by Hunt and Crossley Hunt and Crossley [1975], describe the non-linear contact force
as

f (x(t), v(t)) =















kx(t)α + λx(t)α · v(t) x > 0,

0 x ≤ 0,
(7.2)

where x is the interpenetration of the two colliding objects and v = ẋ. Then force parameters
such as the stiffness k can be related to the perceived stiffness of the impact.

Furthermore, modeling the interaction forces explicitly improves the interactivity of the
models themselves. This is particularly true for continuous contact, such as stick-slip fric-
tion Avanzini et al. [2005].

Finally, this approach allows for a natural translation of the map of everyday sounds pro-
posed by Gaver into a hierarchical structure in which “patterned” and “compound” sounds
models are built upon low-level, “basic” models of impact and friction (see 7.1). Models
for bouncing, breaking, rolling, crumpling sounds are described in Rath and Fontana [2003],
Rath and Rocchesso [2005].

A different phisically-based approach has been proposed by O’Brien and coworkers O’Brien et al.
[2001, 2002]. Rather than making use of heuristic methods that are specific to particular objects,
their approach amounts to employing finite-element simulations for generating both animated
video and audio. This task is accomplished by analyzing the surface motions of objects that
are animated using a deformable body simulator, and isolating vibrational components that
correspond to audible frequencies. The system then determines how these surface motions will
generate acoustic pressure waves in the surrounding medium and models the propagation of
those waves to the listener. In this way, sounds arising from complex nonlinear phenomena can
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be simulated, but the heavy computational load prevents real-time sound generation and the use
of the method in interactive applications.

An important aspect in using physically-based sound models is that of synchronization
with other modalities. The parameters that are needed to characterize the sounds resulting from
mechanical contact (e.g. impulsive sounds due to collision), come directly from the simula-
tion. In other cases where only simple kinematic information like trajectory is present, needed
information like velocity and acceleration can be calculated. Examples of synchronization of
physically-based models for audio and graphics have been given in the above referenced pa-
pers Avanzini et al. [2005], O’Brien et al. [2001, 2002], van den Doel et al. [2001].

Audio-haptic rendering

One interesting application of the contact sound models described in the previous section is in
simultaneous audio-haptic rendering. There is a significant amount of literature that deals with
the design and the evaluation of interfaces that involve auditory feedback in conjunction with
haptic/tactile feedback.

Realistic auditory and haptic cues should be synchronized so that they appear perceptually
simultaneous. They should also be perceptually similar – a rough surface would both sound and
feel rough. This type of interface could improve the amount of control a user could exert on their
virtual environment and also increase the overall aesthetic experience of using the interface.

Therefore there is the need for tight synchronization of the auditory mode and the haptic
mode. User interaction with the simulated environment generates contact forces, these forces
are rendered to the hand by a haptic force-feedback device, and to the ear as contact sounds: this
is more than synchronizing two separate events. Rather than triggering a pre-recorded audio
sample or tone, the audio and the haptics change together when the user applies different forces
to the object.

Perceptual experiments on a platform that integrates haptic and sound displays to were
reported in DiFranco et al. [1997]. Prerecorded sounds of contact between several pairs of objects
were played to the user through the headphones to stimulate the auditory senses. The authors
studied the influence of auditory information on the perception of object stiffness through a
haptic interface. In particular, contact sounds influenced the perception of object stiffness during
tapping of virtual objects through a haptic interface. These results suggest that, although the
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range of object stiffnesses that can be displayed by a haptic interface is limited by the force-
bandwidth of the interface, the range perceived by the subject can be effectively increased by the
addition of properly designed impact sounds.

While the auditory display adopted in DiFranco et al. [1997] was rather poor (the authors
used recorded sounds), a more sophisticated approach amounts to synthesize both auditory
and haptic feedback using physically-based models. This approach was taken in the work
of DiFilippo and Pai DiFilippo and Pai [2000]. In this work the modal synthesis techniques
described in van den Doel and Pai [1998] were applied to audio-haptic rendering. Contact forces
are computed at the rate of the haptic rendering routine (e.g., 1kHz), then the force signals are
upsampled at the rate of the audio rendering routine (e.g., 44.1kHz) and filtered in order to
remove spurious impulses at contact breaks and high frequency position jitter. The resulting
audio force is used to drive the modal sound model. This architecture ensures a low latency
between haptic and audio rendering (the latency is 1ms if the rate of the haptic rendering routine
is 1kHz). Experimental results reported in DiFilippo and Pai [2000] suggest that a 2ms latency
lies below the perceptual tolerance for detecting synchronization between auditory and haptic
contact events.

We conclude this section by addressing some works that, although not specifically related
with audio but rather with visual and haptic feedback, contain interesting ideas that may be
applied to auditory rendering.

Lecuyer Lécuyer et al. [2000] developed interaction techniques for simulating contact with-
out a haptic interface, but with a passive input device combined with the visual feedback of a
basic computer screen. An example reported in Lécuyer et al. [2000]: let us assume that one
manipulates a virtual cube in a 3D virtual environment. The cube must be inserted inside a
narrow duct. As the cube penetrates the duct, its speed is reduced. Consequently, the user will
instinctively increase its pressure on the ball which results in the feeding back of an increasing
reaction force by the static device. The coupling between the slowing down of the object on the
screen and the increasing reaction force coming from the device gives the user an “illusion” of
force feedback as if a friction force between the cube and the duct was directly applied to him.

Very similar ideas have driven the work of van Mensvoort van Mensvoort [2002] who
developed a cursor interface in which the cursor position is manipulated to give feedback to the
user. The user has main control over the cursor movements, but the system is allowed to apply
tiny displacements to the cursor position. These displacements are similar to those experienced
when using force-feedback systems, but while in force-feedback systems the location of the cursor
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is manipulated as a result of the force sent to the haptic display, in this case the cursor location
is directly manipulated. These active cursor displacements result in interactive animations that
induce haptic sensations like stickiness, stiffness, or mass.

Also in light of the remarks given in section 7.3.1, similar ideas may be experimented with
auditory instead of visual feedback: audition indeed appears to be an ideal candidate modality to
support illusion of substance in direct manipulation of virtual objects, while in many applications
the visual display does not appear to be the best choice as a replacement of kinesthetic feedback.
Touch and vision represent different priorities, with touch being more effective in conveying
information about “intensive” properties (material, weight, texture, and so on) and vision em-
phasizing properties related to geometry and space (size, shape). Moreover, the auditory system
tends to dominate in judgments of temporal events, and intensive properties strongly affect the
temporal behavior of objects in motion, thus producing audible effects at different time scales.

Other classes of sounds

The map of everyday sounds developed by Gaver (see figure 7.1) comprises three main classes:
solids, liquids, and gases. Research on sound modeling is clearly biased toward the first of these
classes, while little has been done for the others.

A physically-based liquid sound synthesis methodology has been developed by van den
Doel van den Doel [2004]. The fundamental mechanism for the production of liquid sounds is
identified as the acoustic emission of bubbles. After reviewing the physics of vibrating bubbles
as it is relevant to audio synthesis, the author has developed a sound model for isolated single
bubbles and validated it with a small user study. A stochastic model for the real-time interactive
synthesis of complex liquid sounds such as produced by streams, pouring water, rivers, rain, and
breaking waves is based on the synthesis of single bubble sounds. It is shown in van den Doel
[2004] how realistic complex high dimensional sound spaces can be synthesized in this manner.

Dobashi et al. Dobashi et al. [2003] have proposed a method for creating aerodynamic
sounds. Examples of aerodynamic sound include sound generated by swinging swords or by
wind blowing. A major source of aerodynamic sound is vortices generated in fluids such as
air. The authors have proposed a method for creating sound textures for aerodynamic sound by
making use of computational fluid dynamics. Next, they have developed a method using the
sound textures for real-time rendering of aerodynamic sound according to the motion of objects
or wind velocity.
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7.4.3 A special case: musical interfaces
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Chapter 8
Perception and Cognition: from Cochlea to
Cortex

8.1 Introduction

This chapter is devoted to auditory perception and cognition. Two aspects are addressed: on one
hand the mainstream body of established results in psychoacoustics, physiology, and theory of
hearing. On the other the “cutting edge” of recent progress in this field. This reflects the outlook
of the S2S2initiative, and its ambitious goal of bridging the gap between sound as it reaches our
ears, and sense as reflects action, understanding, or pleasure.

The first section reviews established fields of knowledge in auditory perception and cog-
nition, with emphasis on aspects of their relevance to other fields of the S2S2initiative (“what we
know”). The second section reviews the various approaches and methodologies (“how we know
it”). The third section is oriented towards challenging aspects that the S2S2initiative has vocation
to address (“what we still need to find out”).

The path from Sound to Sense is via perception and cognition. This direct path also partici-
pates in the “control loop” of the reverse path from Sense to Sound. Perception and cognition are
thus central to the argument of this book. From a practical point of view, knowledge of auditory
perception is useful in technological fields that involve sound analysis (what dimensions of the
signal are relevant?) and sound synthesis (what dimensions require control?). The established
body of psychoacoustic knowledge, including detection and discrimination limens, masking
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properties, characterization of elementary perceptual dimensions, etc. is of use for this purpose.
However, applications increasingly involve the semantic and aesthetic dimensions evoked by
sound. To cater for them, we must learn to predict these higher order dimensions from the sound
signal. Before this is possible, we must bridge important gaps in our understanding of how
higher-level perceptual and cognitive mechanisms work.

A number of “gaps” in our understanding may be identified. A first gap separates low-
level processing at the levels of the cochlea, auditory nerve and brainstem (as revealed by
anatomy, physiology and psychoacoustics), and high-level processing at the level of the thalamus
and cortex (as revealed by brain imaging and neuropsychological investigation techniques). A
second gap is between the simple skills studied by classic psychoacoustics (loudness, pitch or
timbre), and higher level cognitive skills as revealed by studies involving speech or music. A
third gap is between the scientific knowledge we elaborate to embody our understanding of these
processes, and the real-world actions we can derive from this understanding to perform real tasks.
This is the traditional gap between fundamental research and applications.

These gaps are at the “cutting edge” of research in hearing, and it is these gaps that we set
out to bridge. However this effort can be effective only if it is firmly backed by the database of
knowledge that has accumulated over decades (or even centuries) of research in psychoacoustics,
physiology, and model-building. This review accordingly devotes attention to all of these aspects.

8.2 Skills and functions

This section is devoted to our knowledge of auditory skills and functions. It reviews textbooks,
influential papers, and useful resources. Since the invention of psychophysics by Fechner in the
19th century Boring [1942], and its rapid development the 20th century, much effort has been
devoted to the humble task of charting out the properties and performance limits of the auditory
system. Early efforts were based on introspection, but later efforts use more reliable experimental
methods based on objective tasks.

8.2.1 Sound qualities

Traditionally, psychoacoustics has focused on the perception of sound “dimensions”. Introspec-
tive studies initially led to a relatively large number of dimensions, some (such as “volume” or
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“density”, e.g. [Boring, 1926]) that have since faded because their perceptual reality (outside
the mind of the introspector) failed to be established reliably, or because they were not really
independent from other existent dimensions. Today one speaks mainly of “pitch”, “loudness”
and “timbre”, the latter enclosing possibly multiple perceptual dimensions. In every case, it
is important to distinguish perceptual dimensions from the physical dimensions that principally
determine them. The essence of psychophysics is to relate these terms. Good sources are Moore
[2003], Yost et al. [1993] or Moore (1995) Moore [1995] or, for signal-related topics, Hartmann
[1997].

Psychoacoustics entails two difficulties: the accurate measurement of a pschological di-
mension, and the appropriate definition of the corresponding “physical dimension”. The former
requires specialized methods (see Sect. 8.3.1), while the latter involves defining some operation
to perform on the stimulus in order to obtain a “predictor” of the perceptual dimension. While
a simple quantity may sometimes be adequate (such as frequency of a pure tone to predict its
pitch), other dimensions such as loudness or timbre may require the definition of a more com-
plex predictor (often called descriptor in the context of content-based indexing). Many different
“descriptors” may be found to have predictive power: the art of descriptor design is to choose
the definition that leads to the simplest psychoacoustical relation.

Loudness

The concept of loudness evolved from the need to formalize the notion of perceptual “strength”
of a sound, correlate of the intensity of the sound-producing phenomenon (or sound itself) that
evokes it. Although our common experience is that loudness increases with sound pressure,
the precise relation between signal characteristics and subjective loudness is complex. The basic
psychoacoustics of loudness are well described by e.g. [Moore, 2003] or Plack and Carlyon [1995].
Studies to characterize the dependency of loudness on the spectral and temporal characteristics of
sounds have led to the development of loudness predictors (also called “loudness models”). The
principles behind the design of such models are well explained by Hartmann (1997). The classic
model of loudness is Zwicker and Scharf [1965]. More recent models are Moore and Glasberg
[1996] or Moore et al. [1997]. These models predict the overall loudness of a relatively short
isolated sound, but ongoing sounds also appear to fluctuate in loudness, an aspect that is less
well characterized Susini et al. [2002].
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Pitch

The concept of pitch has roots that extend far back in time [de Cheveigné, 2005]. The ba-
sic pschophysics of pitch are well described by Moore [2003], Houtsma [1995], or Hartmann
[1997] for signal-related aspects. A good review of the current status of knowledge on pitch is
Oxenham and Plack [2005].

Since antiquity, pitch perception has focused much interest, as exemplary of auditory per-
ception itself. [de Cheveigné, 2005] reviews pitch perception theory from a historical perspective.
Current models of pitch have roots that extend back in time to the greek philosophers, via Galileo,
Mersenne, du Verney, Fourier, Helmholtz and Licklider. This chapter opens with a “crash course
on pitch models” that presents the operating principles of the two major approaches to pitch:
pattern-matching and autocorrelation. It then reviews the roots of the idea of resonance that led
first to Helmholtz’s “place” theory and from there to pattern matching, and the idea of “count-
ing” that led to Rutherford’s “telephone” theory and from there to autocorrelation. A unifying
concept is the vibrating string, that underlies the monocord of Pythagoras, the measurement of
frequencies of musical tones by Mersenne, and Helmholtz’s metaphor of the ear as a piano. The
physics of the vibrating string embody ideas of both pattern-matching and autocorrelation. The
chapter then reviews several hot topics in pitch (the “cutting edge” of pitch theory), and ends with
a discussion of how pitch theory might evolve from now. de Cheveigné [1998] presents a model
of pitch perception based on the notion of harmonic cancellation. The model is formally similar to
the autocorrelation model of citeLicklider51 or Meddis and Hewitt [1991], multiplication being
replaced by subtraction, and the search for a maximum by that of a minimum. An advantage of
the new model is that it relates pitch perception to pitch-based segregation [de Cheveigné, 1993,
1997], and this allows it to be extended to account for perception of multiple pitches as evoked
by several instruments playing together [de Cheveigné and Kawahara, 1999]. Several lines of
evidence suggest that the auditory system uses the cancellation principle as embodied by these
models. For example in de Cheveigné [1999], a cancellation-based model allows prediction of
the subtle shifts in the pitch of a partial within a harmonic complex, as the partial is mistuned.

Much progress has been made recently in the understanding of pitch. Using a task in
which listeners were required to detect changes in a simple melody, Pressnitzer et al. [2001c]
determined that the lower limit of melodic pitch is approximately 30Hz. Similar limits have
been found in other studies (e.g. Krumbholz et al. [2000]), but in each case there was doubt
as to the musical nature of the pitch percept involved in the task. Intonation in speech or
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vibrato in music use frequency modulation as an expressive means. A series of studies by L.
Demany and colleagues has exhibited a strong asymetry in the perception of FM shapes. A
rising-then-decreasing pitch glide, or FM peak, is much more salient than a decreasing-then-
rising glide, or FM trough. A computational modeling attempt has been made to account for the
asymetry [de Cheveigné, 2000b], but its neural bases are still unknown. Pressnitzer et al. [2002]
recorded ensemble cortical responses to FM-peaks and troughs using functional brain imaging
(magnetoencephalography). The dipole model of the data exhibited a correlate of the perceptual
data in the amplitude of late evoked responses. Although speculative, a possible interpretation
of the data is consistent with the temporal integration mechanisms observed in the case of the
continuity illusion. Periodic sounds such as voiced speech or musical notes produce a strong
sensation of pitch. Pressnitzer et al. [2001a] investigated the limits of the periodicity detection
mechanisms by introducing various types of regularities in artificial click trains. By doing so, they
found a paradoxical pitch shift effect that could not be accounted for by any existing pitch model.
Single unit recordings showed that the pitch shift was correlated with statistics of the time-
interval distributions of spike trains at the level of the ventral cochlear nucleus Pressnitzer et al.
[2001b].

Timbre

Whereas qualities such as loudness or pitch may be understood as unidimensional in first ap-
proximation, the study of timbre is complicated by its inherently multidimensional nature. Timbre
is defined as the quality that allows to judge that are “two sounds similarly presented and having
the same loudness and pitch are dissimilar” ANSI [1960], a definition that potentially includes
the full richness of sound (other than pitch and loudness). One might thererfore expect timbre
to be, not only multidimensionsal, but of such high dimensionality as to escape any attempt at
psychoacoustic characterization. An important result of the pioneering studies on timbre using
multidimensional scaling (MDS) techniques is that listeners repeatably base their judgements
of timbre on a small number of psychological dimensions. This is not to say that these few
dimensions exhaust the richness of sound, but rather that they carry a relatively strong weight
in listener’s jugments. Perceptual dimensions derived from MDS can be related to signal-based
measures (timbre descriptors) in what can be seen as a psychoacoustics of timbre. Progress in
this field is in part the result of progress in MDS techniques.

The psychoacoustics of timbre are described e.g. in Handel [1995]. Recent progress
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are described in McAdams et al. [2002, 1999], McAdams [1999, 1994], Krimphoff et al. [1994],
McAdams [1992], McAdams and Cunibile [1992], Marozeau et al. [2003]. Marozeau et al. [2003]
address the dependency of the timbre of a musical instrument on the note being played. Most
previous multidimensional scaling studies of timbre were performed using sets of sounds from
instruments all playing the same note, because of methodological difficulties related to the
perceptual salience of pitch differences. Methodological difficulties were overcome in this study,
that showed (a) that timbre comparisons can be made across F0s, (b) that significant timbre
changes occur with F0, but they are neither systematic nor large, at least for the instruments
studied, (c) that adjustments must be made to descriptors of timbre (such as spectral centroid) in
order to allow them to predict timbre over a full range of F0s. This latter result is important for
indexing and retrieval applications.

The perception of timbre is closely related to that of the identity of sources such as musical
instruments, or the nature of physical processes that give rise to sound McAdams et al. [2004].
[develop and add pointers to other chapters].

8.2.2 Scene analysis

Traditionally, psychoacoustics has considered the relation of the sound of an isolated source to
the quality or percept it evokes. However most acoustic scenes are cluttered, and this limits the
applicability of such a simple relation. Recent years have seen renewed interest in the problems
raised by the perceptual organization of complex acoustic environments, particularly under the
impulse of Bregman (1990). The problem of auditory scene analysis is separating the acoustic
waveform that arrives at the listener’s ears into the components that correspond to the different
sources in the scene, assigning perceptual identity to those sources, and taking the appropriate
action.

Brain mechanisms for scene analysis and object formation are among the major problems
in cognitive neuroscience. The study of scene analysis has a long history in the visual field
where it has been shown that different brain areas are responsible for extracting and coding
different features (such as color, shape, movement) which are grouped together by pre-attentive
mechanisms into objects, that serve as inputs for higher order processing. The idea that similar
processes may be operating in the auditory domain is of interest. In recent years, attention
has expanded from studying the encoding of simple auditory features to more complicated,
high level processing that is related to how these features group together to create the listeners
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impression of sound Nelken et al. [2005]. This has led to increasing use of the term “Auditory
Object” Kubovy and Van Valkenburg [2001], Griffiths and Warren [2004]. A priori, it is not clear
that there should be an analogy between the ways in which visual and auditory information
are represented in the brain. The nature of the incoming signals is different, in particular the
crucial role that time plays in the coding of auditory information, compared to visual information.
However are several reasons to draw a parallel between visual and auditory scene analysis: the
long known gestalt principles of organization of a visual scene (i.e similarity, good continuation,
etc..) have been shown to have counterparts in the auditory domain Bregman [1990]. This might
be related to the fact that, in natural conditions, visual objects are often sources of auditory events,
and so are subject to the same physical organization rules. In that respect it is interesting that
Cusack et al. [2000] report deficits in allocating attention to auditory objects in patients that are
diagnosed with a deficit in allocating attention between visual objects. One possible implication
of these findings is that there exists a representation of ’objectness’ independent of modality. Such
a possibilty is further strengthened by evidence of cross-modal binding, where visual events are
grouped with concurrent auditory events (e.g. [Driver and Spence, 2000]).

Neurophysiological evidence for feature extraction in the auditory domain (reviewed in
[Cusack and Carlyon, 2003]) has led to the speculation that, as in vision, auditory features such
as pitch, timbre and loudness are extracted by separate mechanisms. The task of the system is
then to combine them together to form a representation of the external object that generated them
Nelken [2004]. However it is not clear whether the problem facing the auditory system should
be stated in terms of a “binding problem” or in terms of a “separation problem” de Cheveigné
[2000a, 2004].

A common paradigm in the study of auditory scene analysis is stream segregation. In a
variety of tasks, streams have been shown to behave similarly to visual ’objects’ in the sense that
tones that have similar features such as pitch, timbre or amplitude modulation tend to group
together and be perceived as a single object Bregman [1990]. The study of the conditions under
which simple tones group together is a step towards understanding how listeners treat more
complicated acoustic streams such as speech or music (how one is able to listen to a piano and
a violin and listen to each instrument separately and the tune as a whole). Of particular interest
is the ambiguity point, where streams are sometimes perceived as segregated and sometimes
as integrated. Studying these conditions allows the research of brain mechanisms that underlie
perception (since the acoustic stimulus is exactly identical in all conditions, but the percept is
different).
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Are streams ’auditory objects’? The term ’auditory’ object has recently generated signifi-
cant debate, partly because the term is used with a wide range of meanings, that are often quite
poorly defined. Zatorre and Belin [2005 (to appear] make the useful distinction between “audi-
tory sources” and “auditory patterns”, the former being the carrier of the latter. This distinction
allows for the separation of the source properties, such as a person’s voice or an instruments pitch
or timbre, from the temporal properties of the acoustic signals. These two properties might be
processed by different systems since computing the source requires less binding across time than
computing the temporal pattern, and it might be that the properties that influence the streaming
(temporal aspect) are influenced by computation of the source.

Although physiological evidence for these processes is still at it’s infancy, this is a path along
which research in the auditory system is progressing. There has been an attempt to characterize
a two-pathway “what/where” organization of the auditory system, in the same way that was
described for the visual system. However so far evidence, mostly obtained with fMRI/PET is
conflicting Zatorre and Belin [2005 (to appear]. Whereas brain imaging techniques, such as fMRI
and PET can mostly address questions relating to which brain areas are involved in computation,
non-invasive electrophysiological techniques like EEG and MEG are superior at investigating
the time course of activation. Although much more work needs to be done in this area, we
are beginning to understand the temporal properties of auditory stream colleagues Alain et al.
[2002], Dyson and Alain [2004], in EEG studies of concurrent sound segregation, reported that
the perception of a mistuned harmonic as a separate sound is associated with a negative wave,
referred to as object related negativity, peaking at about 150ms after sound onset.

de Cheveigné [2000a] argues that the most difficult and important task that confronts
the auditory system is that of parsing complex acoustic scenes, and that it has been shaped by
evolution so as to perform that task. Ecologically relevant tasks, such as detection and localization
of auditory objects in noisy environments, involve comparison of acoustic signals across ears.
Interaural correlation (IAC) - the degree of similarity of the waveforms at the two ears (defined as
the cross-correlation coefficient of the signals), is a basic cue for binaural processing Therefore the
investigation of the neural mechanisms that are sensitive to interaural correlation is particularly
informative in the study of how listeners analyze the auditory scene and react to changes in the
order of the environment. An MEG study from our lab Chait et al. [2005 (submitted] has recently
investigated the neural mechanisms of interaural correlation processing in cortex and compared
with behavior. We demonstrate differences in location and time course of neural processing:
transitions from correlated noise are processed by a distinct neural population, and with greater
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speed, than transitions from uncorrelated noise. This asymmetry is reflected in behavior: listeners
are faster and better at detecting transitions from correlated noise than same-sized transitions
from uncorrelated noise. An 80 ms difference between the first response to transitions from
correlated noise, versus from uncorrelated noise, may be the neural correlate of behavioral
response time differences. These findings have interesting implications to the processes by
which the central nervous system analyzes changes in the structure of the environment.

Sequential

Correlates of perceptual illusions offer an opportunity to probe the nature of neural represen-
tations. In the auditory continuity illusions, listeners report hearing a sound as continous even
though it is repeatedly interrupted by bursts of noise. Establishing perceptual continuity in such
circumstances is important, for instance to follow a conversation in a noisy environment. We
launched a collaborative project, that has received support of the CNRS in the form of an ACI
funding, to study the neural mechanisms of the illusion. Magnetoencephalography recordings
combined with psychophysical measurements indicated that the illusion is not a case of filling-
in: the neural activity associated with the interrupted sound was not restored in the periods
of illusory perception. However, correlates of the illusion were found in a suppression of the
middle-latency and late responses (evoked gamma-band response, M100). We put forward the
hypothesis that these responses might be markers of the start and end of integration into a single
auditory event. The auditory illusion would then act on the temporal boundaries of integration
rather than on the encoding of features of the sound event Pressnitzer et al. [2004a,b].

Simultaneous

The classical view of signal detection in noise is based on the decomposition of the incoming
sounds into separate frequency bands at the level of the cochlea. When noise is added to the bands
that code a signal, masking occur, and more noise implies more masking. This spectral model is
adequate to predict masking with stationnary signals. However, most real-world auditory scenes
comprise time-varying sounds. In this case, it has been found that the temporal structure of the
noise and signal can have a large effect on signal detection, which cannot be accounted for by
the classical view. For instance, if some speech and a background noise have different temporal
structures, a sizeable masking release can occur. Using single unit recordings in the ventral
cochlear nucleus of the anaesthetized guinea-pig, we showed that an across-frequency pooling
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of information by inhibitory neurons could provide a quantitative correlate of the behavioral
masking release. A computational model was also proposed to reproduce the neural recordings
and masking thresholds [Pressnitzer et al., 2001b, Meddis et al., 2002, Verhey et al., 2003].

8.2.3 Sound-based cognition

[TBD]

Scene analysis is a first step in “making sense” of acoustic information, but many others
have been studied particularly in the case of speech, music, and more recently environmental
sounds. [pointers to other chapters]

Speech

Music

Environment

In Fourier analysis, signals start at the beginning of time and go on forever. The information about
how precisely they start and end is somewhat hidden in the phase of the spectral components,
an information that some auditory theories discard altogether. We are nevertheless exquisitely
sensitive to the shape of amplitude transients, as the noticeable difference between synthesized
and real instruments indicates. Also, the transients information is preserved in hearing-impaired
patients with cochlear implants (Lorenzi, Gallégo and Patterson, 1997). We found that neurons
in the early auditory nucleii enhance the shape of the transients, both in the cochlear nucleus
Pressnitzer et al. [2003] and in the inferior colliculus Neuert et al. [2001], to an extent that parallels
behavioral performance. Cortical investigations are under way using magnetoencephalography
Kult et al. [2003].

8.2.4 Ecology of sound perception

[TBD]

Perception is ultimately at the service of action to ensure the survival of the organism or
the species. The ecological perspective is useful to gain understanding the forces that structured
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the perceptual systems of our ancestors.

de Cheveigné [2005 in pressb] reviews the auditory perception of space from the perspec-
tive of its role for the survival of our ancestors. de Cheveigné [2005 in pressa] discusses the
relations between the auditory perception of space and action. de Cheveigné [2000a] argues
that the most difficult and important task that confronts the auditory system is that of parsing
complex acoustic scenes, and that it has been shaped by evolution so as to perform that task.

8.3 Approaches and methodology

[Tools of the trade. TBD]

8.3.1 Psychoacoustics

8.3.2 Physiology

8.3.3 Brain imaging

8.3.4 Modeling

8.4 Bridging the gaps

[TBD]

Much has been learned, but there are considerable “blind spots” in our knowledge of
auditory perception and cognition. These concern our knowledge of the phenomena and how
they depend on stimuli, and also our understanding of the processes at work within the auditory
system. Shortcomings are most obvious when we try to design systems to do tasks that seem
natural to us: we then realize that we do not know how the job is done. The S2S2project is an
appropriate environment to map out these areas in which our understanding is seriously lacking,
and to focus new efforts on bridging the gaps.
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8.4.1 From sensation to cognition

Psychoacoustics deals well with elementary sensation and perception, but there is a severe upper
bound on the richness of the phenomena that can be studied. Introspective and descriptive
approaches such as musicology or philosophy have no such upper limit, but they lack the power
to make strong statements about the generality of their results.

8.4.2 From cochlea to cortex

Our knowledge of processing within the auditory system is fed from two sources: anatomical
and physiological studies of animal models, and brain imaging in humans. Much is known
about response properties of the cochlea and brainstem, but beyond the level of the inferior
colliculus responses are complex, diverse, and labile. Conversely, brain imaging techniques
open a window on cortical responses, but are blind to subcortical events. Lacking are satisfactory
models of how low- and high-level responses relate to one another, and especially, how they
contribute to performing the tasks required by survival.

8.4.3 From model to method

Arguably the best test of knowledge is if one can do something with it. If a method derived from
a model is succesful, we know that the processing principles that they share are effective. The
translation from model to method strips away details irrelevant for the task, and this may lead to
a more abstract and deeper understanding. Furthermore, once the method has been expressed
in engineering terms it may be improved, and the improved methods may serve to build new
models. Intercourse between model and method is a driving force for knowledge.
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A. de Cheveigné, S. McAdams, and L. Collet, editors, Auditory signal processing: physiology,

psychoacoustics, and models, pages 265–274. Springer, New York, 2005.



BIBLIOGRAPHY 339

V. Neuert, D. Pressnitzer, R. D. Patterson, and I. M. Winter. The re-
sponse of single units in the inferior colliculus of the guinea pig to
damped and ramped sinusoids. Hearing Research, 159:36–52, 2001. URL
$<$AHREF="http://www.ircam.fr/pcm/pdf/neuert-2001-damped_ramped_IC.pdf"$>$PDF$<$/A$>$.

A. Oxenham and C.J. Plack. Pitch - Neural coding and perception. Springer, New York, 2005.

C.J. Plack and R.P. Carlyon. Loudness perception and intensity coding. In B.C.J. Moore, editor,
Hearing, pages 123–160. Academic press, San Diego, 1995.
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Chapter 9
Sound Design and Auditory Displays

Amalia de Goetzen, Pietro Polotti, Davide Rocchesso

Università degli studi di Verona; Video, Image Processing and Sound Group

Abstract

The goal of this chapter is to define the state of the art of research in Sound Design and Auditory
Display. The aim is to provide a wide overview of the extremely different fields, where these
relatively new disciplines find application. These fields range from warning design and computer
auditory display to Architecture and Media.

9.1 Introduction

Sounds in human-computer interfaces have always played a minor role as compared to visual and
textual components. Research efforts in this segment of human-computer interaction have also
been relatively little, as testified by the relatively new inclusion of Sound and Music Computing
(H.5.5) as a sub-discipline of Information Interfaces and Presentation (H.5). The words sound or
audio do not appear in any other specification of level-one or level-two items of the hierarchy.
On the other hand, for instance, computer graphics is a level-two item on its own (I.3), and Image
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Processing and Computer Vision is another level-two item (I.4).

So, the fact the scarcity of the literature, especially the lack of surveys of the field, do
not come as a surprise. Indeed, a survey was published in 1994 by Hereford ?, where a deep
investigation of the state of the art of sound usage in Human-Computer Interaction was presented.
The main important topics of this overview are: Earcons (symbolic and iconic), and sound in data
sonification and in virtual reality environments. The literature study follows some important
applications, pointing out successes and problems of the interfaces, always pushing the reader
to think about lack of knowledge and need of further explorations. The paper ends with useful
guidelines for the interface designer who uses sound, trying to stress the need to improve the
knowledge about how people interpret auditory messages and about how sound can be used
in human-computer interface to convey information about data. The knowledge about sound
perception is not enough to perform good interactions, as the nature of the interface affects the
creation of users’ mental models of the device.

The rest of the chapter intends to go beyond Hereford’s survey, in several ways. First,
we consider a selection of major works that appeared in the field in the last couple of decades.
This works have been either very influential for the following researches, or have appeared in
respected journals thus being likely to affect wide audiences. Second, the division of the chapter
into sections and subsections gives a sort of taxonomical organization of the field of Sound Design
and Auditory Display.

9.2 Warnings, Alerts and Audio Feedback

Auditory warnings are perhaps the only kind of auditory displays that have be thoroughly
studied and for whom solid guidelines and best design practices have been formulated. A
milestone publication summarizing the multifaceted contributions to this sub-discipline is the
book edited by Neville A. Stanton and Judy Edworthy ?. This book opening chapter summarizes
well the state of the art in human factors for auditory warnings as it was in the late nineties. Often
warnings and alerts are designed after anecdotical evidence, and this is also the first step taken
by the authors as they mention problems arising in pilot cockpits or central control rooms. Then,
auditory displays are confronted against visual displays, to see how and when to use one sensory
channel instead of the other. A good observation is that hearing tends to act as a natural warning
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sense. It is the ears-lead-the-eyes pattern1 that should be exploited. The authors identify four
areas of applications for auditory warnings: personal devices, transport, military, and control
rooms. Perhaps a fifth important area is geographic-scale alerts, as found in ?.

The scientific approach to auditory warnings is usually divided into the two phases of
hearing and understanding, the latter being influenced by training, design, and number of
signals in the set. Studies in hearing triggered classic guidelines such as those of Patterson ?. He
stated, for instance, that alarms should be set between 15 and 25 dB above the masked threshold
of environment. Patterson faced also the issue of design for understanding, by suggesting a
sound coding system that would allow mapping different levels of urgency.

The possibility that using naturalistic sounds may be better for retention is discussed,
especially with reference to the works of Blattner and Gaver ??. The problem of the legacy with
traditional warnings is also discussed (sirens are usually associated with danger, and horns with
mechanical failures). The retention of auditory signals is usually limited to 4 to 7 items that can be
acquired quickly, going beyond is hard. In order to ease the recalls, it is important to design the
temporal pattern accurately. Moreover, there is a substantial difference in discriminating signals
in absolute or relative terms. In the final part of the introductory chapter ?, the authors focus
on their own work on the classification of alarm-related behaviors, especially Alarm-Initiated
Activities (AIA) in routine events (where ready-made responses are adequate) and critical events
(where deductive reasoning is needed). In the end, designing good warnings means balancing
between attention-getting quality of sound and impact on routine performance of operators.

In the same book, the chapter ? is one of the early systematic investigations on the use of
“ecological” stimuli as auditory warnings. The expectation is that sounds that are representative
of the event to which they are alarming would be more easily learnt and retained. By using
evocative sounds, auditory warnings should express a potential for action: for instance, sound
from a syringe pump should confer the notion of replacing the drug. Here, a methodology
for designing “ecological” auditory warnings is given, and it unrolls through the phases of
highlighting a reference function, finding or generating appropriate sounds, ranking the sounds
for appropriateness, evaluating properties in terms of learning and confusion, mapping urgency
onto sounds. A study aimed at testing the theory of auditory affordances is conducted by means
of nomic (heartbeat for ECG monitor), symbolic (nursery chime for infant warmer), or metaphoric
(bubbles for syringe pump) sound associations. Some results are that:

1http://c2.com/cgi/wiki?SonificationDesignPatterns
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learned mappings are not easy to override;

there is a general resistance to radical departures in alarm design practice;

suitability of a sound is easily outweighed by lack of identifiability of an alarm function.

However, for affordances that are learnt through long-time practice, performance may still be
poor if an abstract sound is chosen. As a final remark for further research, the authors recommend
to get the end users involved when designing new alarms. This is a call for more participatory
design practices that should apply to auditory interface components in general, and not only to
warnings.

If one considers a few decades of research in human-machine interfaces, the cockpit is one
of the most extensively studied environments, even from an acoustic viewpoint. It is populated
of alarms, speech communications, and it is reached by “natural” sounds, here intended as
produced by system processes or events, such as mechanical failures. In the framework of
the functional sounds of Auditory Warning Affordances, in ? Ballas proposes five linguistic
functions used to analyze the references to noise in accidents briefs: exclamation, deixis (directing
attention), simile (interpretation of an unseen process), metaphor (referring to another type of
sound-producing event), and onomatopoeia. To see how certain acoustic properties of the sounds
affect the identification of brief sound phenomena, an acoustic analysis was performed on a set
of 41 everyday sounds. A factor related to perceptual performance turned out to be the union of
(i) harmonics in continuous sounds or (ii) similar spectral patterns in bursts of non-continuous
sounds. This union is termed Hst and it describes a form of spectral/temporal entropy. The author
notices that the warning design principles prescribe similar spectral patterns in repeated bursts,
a property similar to Hst. An innovative point of this paper is that counting the pulses may give a
hint for identification performance. Experimental results give some evidence that the repetition
of a component improves identification, whereas the aggregation of different components impairs
identification. In the last section, the chapter describes the work of F. Guyot, who investigated
the relationship between cognition and perception in categorization of everyday sounds. She
suggested three levels for the categorization (abstraction) process:

1. type of excitation,

2. movement producing the acoustic pattern,

3. event identification.
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Her work is related with the work of Schafer ?, Gaver ?, and Ballas’ ? own investigations on
the set of 41 sounds. In particular, Ballas’ perceptual and cognitive clustering resulted in the
categories:

water-related,

signalling and danger-related,

doors and modulated noises,

two or more transient components.

Finally, Ballas’ chapter provides a connection with the soundscape studies of ecological acousti-
cians.

Special cases of warnings are found where it is necessary to alert many people simul-
taneously. Sometimes, these people are geographically spread, and new criteria for designing
auditory displays come into play. In ? the authors face the problem of a system alert for the town
of Venice, periodically flooded by the so-called “acqua alta”, i.e. the high tide that covers most of
the town with 10-40 cm of water. Nowadays, a system of 8 electromechanical and omnidirectional
sirens provide an alert system for the whole historic town. A study of the distribution of the
signal levels throughout the town was first performed. A noise map of the current alert system
used in Venice was realized by means of a technique that extracts building and terrain data from
digital city maps in ArcView format with reasonable confidence and limited user intervention.
Then a sound pressure level map was obtained by importing the ArcView data into SoundPLAN,
an integrated software package for noise pollution simulations. This software is mainly based on
a ray tracing approach. The result of the analysis was a significantly non-uniform distribution
of the SPL throughout the town. One of the goals of this work is, thus, the redefinition and
optimization of the distribution of the loudspeakers. The authors considered a Constraint Logic
Programming (CLP) approach to the problem. CLP is particularly effective for solving combi-
natorial minimization problems. Various criteria were considered in proposing new emission
points. For instance, the aforementioned Patterson’s recommendations require that the acoustic
stimulus must be about 15 dB above background noise to be clearly perceived. Also, installation
and maintenance costs make it impractical to install more than 8 to 12 loudspeakers in the city
area. By taking into account all of these factors, a much more effective distribution of the SPL
of the alert signals was achieved. The second main issue of this work is the sound design of the
alert signals. In this sense the key questions here considered are:
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how to provide information not only about the arrival of the tide but also about the mag-
nitude of the phenomenon,

how to design an alert sound system that would not need any listening-training, but only
verbal/textual instructions.

Being Venice a tourist town, this latter point is particularly important. It would mean that
any person should intuitively understand what is going on, not only local people. The choices
of the authors went towards abstract signals, i.e. earcons, structured as a couple of signals,
according to the concept of “attenson” (attention-getting sounds). The two sound stages specify
the rising of the tide and the tide level, respectively. Also, the stimulus must be noticeable
without being threatening. The criteria for designing sounds providing different urgency levels
were the variation of: The fundamental frequency, the sound inharmonicity and the temporal
patterns. The fundamental frequency was set between 400 and 500 Hz, which maximize the
audibility at large distances. The validation of the model concludes the paper. The subjects did
not received any training but only verbal instructions. The alert signal was proved to be effective,
and no difference between Venetians and not-Venetians was detected. In conclusion, a rich alert
model for a very specific situation and for a particular purpose was successfully designed and
validated. The model takes into account a number of factors ranging from the topography and
architecture of Venice, to the need of culturally non-biased alert signal definition, as well as to
the definition of articulated signals able to convey the gravity of the event in an intuitive way.

9.3 Earcons

In ? Blattner introduced the concept of earcons, defining them as “non-verbal audio messages that
are used in the computer/user interface to provide information to the user about some computer
object, operation or interaction”. These messages are called motives, “brief succession of pitches
arranged in such a way as to produce a tonal pattern sufficiently distinct to allow it to function
as an individual recognizable entity”. Earcons must be learned, since there is no intuitive link
between the sound and what it represents: the earcons are abstract/musical signals as opposed to
auditory icons (Gaver 1989), where natural/everyday sounds are used in order to build auditory
interfaces.

In ?, Brewster presents a new structured approach to auditory display defining composing
rules and a hierarchical organization of musical parameters (timbre, rhythm, register, etc.), in
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order to represent hierarchical organizations of computer files and folders. In particular, this work
concerns environments like telephone-based interfaces (TBIs) where navigation is a problem due
to visual display dimensions. As already mentioned, the main idea is to define a set of sound-
design/composing rules for very simple “musical atoms”, the earcons, with the characteristics of
being easily distinguishable from each other. The three experiments described in the abstract and
presented in the paper explore different aspects of the earcons. The first one is more “abstract”
and it aims at defining easily recognizable and distinguishable earcons. The second one addresses
the very concrete problem of lo-fi situations, where mono signals and a limited bandwidth (a
typical telephone-based scenario) is a strong limitation. In the same experiment the fundamental
aspect of “musical memory” is considered: the navigation test was carried out first after the
training and repeated after one week. In this latter aspect very good results were achieved: there
was no significant difference between the results of the test right after the training and after one
week. On the contrary, in some cases the listeners were even more skilled in recognizing the
earcons one week later than immediately after the training. An interesting feedback coming from
the experiments was that the listeners developed mnemonic strategies based on the identification
of the earcons with something external as geometric shapes (triangles and so on). This could be
a good cue for earcon sound design. The third experiment is a bit less intriguing: the idea is to
identify a sound (timbre+ register) with numbers and to represent hierarchies in a book-like style
(chapter, sections, subsections) by means of “sounding numbers”. In general, these experiments
show how problematic the design of earcons is, where many hierarchical levels are involved or
where many items are present: one needs to think about complex-composed or even polyphonic
earcons challenging the listening skills of the user. In any case, situations which do not present
very complex navigation requirements (as in the case of TBI applications), can build upon earcons
a robust and extensible method of representing hierarchies.
Another work done by Brewster[?] is one of the solid papers about earcons. Namely, it faces
the problem of concurrent earcon presentation. Before treating such problem it gives a very
good three-page survey about auditory display, sonification, auditory icons, earcons, etc. Then it
gives a few ideas about auditory scene analysis and its principles, because they could be used to
design more robust earcons. Two experiments are presented, which are also exemplary for their
use of statistical analysis and workload measures. In the first experiment, the goal is to see how
recognition of earcons and their parameters gets worse as the number of concurrent earcons is
increased. In the second experiment, new design solutions are tested in their ability to increase
the earcon robustness against concurrent presentation. It turns out that using multiple timbres
or staggering the onsets will improve attribute identification. As a practical final result of the
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experiments, four guidelines for designing robust concurrent earcons are given.

9.4 Auditory Icons

Another concept has been introduced in the nineties by Bill Gaver as an earcon counterpart:
auditory icons. The basic idea is to use natural and everyday sounds to represent actions and
sounds within an interface. The two papers in ?? can be considered as a foundation for later
works on everyday listening: Gaver presents a fundamental aspect of our way of perceiving the
surrounding environment by means of our auditory system. Trying to reply the question “what
do we hear in the world?” ? a first and most apparent result is that while a lot of research efforts
were and are devoted to the study of musical perception, our auditory system is first of all a tool
for interacting with the outer world in everyday life.
When we consciously listen to or hear more or less unconsciously “something” in our daily
experience, we do not really perceive and recognize sounds but rather events and sound sources.
This “natural” listening behavior is denoted by Gaver as “everyday listening” as opposed to
“musical listening”, where the perceptual attributes are those considered in the traditional re-
search in audition. As an example, Gaver writes: “while listening to a string quartet we might
be concerned with the patterns of sensation the sounds evoke (musical listening), or we might
listen to the characteristics and identities of the instruments themselves (everyday listening).
Conversely, while walking down a city street we are likely to listen to the sources of sounds - the
size of an approaching car, how close it is and how quickly it is approaching.
Despite the importance of non-musical and non-speech sounds, the research in this field is scarce.
Gaver writes the truth: we do not really know how our senses manage to gather so much informa-
tion from a situation like the one of the approaching car described above. Traditional research on
audition was and is concerned mainly with a Fourier approach, whose parameters are frequency,
amplitude phase and duration. On the contrary, new research on everyday sounds focuses on
the study of different features and dimensions, i.e. those concerning the sound source.
The new approach to perception is “ecological”. New perceptual dimensions like size and force
are introduced by Gaver. More generally, the fundamental idea is that complex perceptions are
related to complex stimuli (Gaver writes about “perceptual information” too) and not to the
integration of elementary sensations: “For instance, instead of specifying a particular waveform
modified by some amplitude envelope, one can request the sound of an 8-inch bar of metal struck
by a soft mallet”. The map of everyday sounds compiled by Gaver is based on the knowledge of



9.4. Auditory Icons 349

how a sound source first and the environment afterwards determine the structure of an acous-
tical signal. “Sound provides information about an interaction of materials at a location in an
environment”.
Here, Gaver makes a fundamental distinction among three categories: solid, liquid and aerody-
namic sounds. First, he considers sounds produced by vibrating solids. Then he analyzes the
behavior of sounds produced by changes in the surface of a liquid. Finally, he takes into consid-
eration sounds produced by aerodynamic causes. Each of these classes is divided according to
the type of interaction between materials. For example, sounds generated by vibrating solids are
divided in rolling, scraping, impact and deformation sounds. These classes are denoted as “basic
level sound-producing events”. Each of them makes the properties of different sound sources
evident. At a higher level three types of complex events should be considered: those defined by
a “temporal patterning” of basic events (e.g., bouncing is given by a specific temporal pattern
of impacts); “compound”, resulting from the overlap of different basic level events; “hybrid
events”, given by the interaction between different types of basic materials (i.e., solids, liquids
and gasses). Each of these complex events should possess, potentially, the same sound source
properties made available by the component basic events plus other properties (e.g., bouncing
events may provide us information concerning the symmetry of the bouncing object). In more
general terms, we can hear something that is not the size or the shape or the density of an object,
but the effect of the combination of these attributes. Finally, Gaver tries to define maps based
on a hierarchical organization of everyday sounds. Another interesting remark appears in the
paper: what is the result of a simple question such as: “what do you ear?” If the source of a
sound is identified, people tend to answer in terms of an object and a space-time context, i.e. an
event and, possibly, a place in the environment. The answer concerns the perceptual attributes
of the sound only if the source is not identified.

The complementary part of the paper discussed above is the one in which Gaver introduces
the question “how do we hear in the world?” ?.

While in the previous paper the relevant perceptual dimensions of the sound generation
events were investigated, here the focus is on the acoustical information through which we gather
information about the events. The starting point is once again the difference between the experi-
ence of sounds themselves (e.g. musical listening) and “the perception of the sound-producing
events” (e.g. everyday listening). Taking into account the framework developed in the compan-
ion article, Gaver proposes a variety of algorithms that allow everyday sounds to be synthesized
and controlled along some dimensions of their sources. He proposes to use the analysis and
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synthesis approach to study everyday sounds: both sounds and events can be analyzed in order
to reduce the data, re-synthesized and then compared to the originals. While in synthesizing
sounds of traditional musical instruments the goal is to achieve a perceptually identical version
of the original, the main difference here is that we just need to convey the same information
about a given aspect of the event. In order to suggest relevant source attributes, the acoustical
analysis of a sound event must then be supported by a physical analysis of the event itself.
Gaver gives some examples of algorithms, starting from the three basic sound events, which
are impact, scraping, and dripping, and concludes with three examples of temporally-complex
events, which are breaking, bouncing and spilling. An example of informal physical analysis in
describing complex machine sounds is given too. All these examples provide a methodology to
explore acoustic information using casual listening to guide the development of the algorithms.
The final discussion of the paper concerns the methodological issues that are connected to the
validation of synthesis models and suggests their application to the creation of auditory icons.

This investigation is developed in another paper written in 1993 ? which can be considered
a fundamental one in the history of sound design and auditory icon definition: Gaver defines in
a very clear way the goals of auditory icons as vectors of “useful information about computer
events”. Being a paper from the beginning of the 90s, it is not surprising that it is still very con-
cerned about lack-of-capability and computational inefficiency of digital sampling and synthesis
techniques. Some of these concerns, related to the parametrization of sounding objects, are of
course still open problems, while some other issue seems to belong to the past (fortunately).
According to what are the main computer events and interaction with a computer desktop, the
author follows the classification described in the previous paper and analyzes different kinds
of interaction-sounds as: a) Impact sounds, b) Breaking/Bouncing and Spilling sounds and c)
Scraping sounds. A final section is devoted to machine sounds.

This subdivision of interaction sounds is extremely clear, ranging from a simple impact
to groups of impact sounds involving temporal patterns and organization, and concluding with
continuous interaction (scraping). All these classes of sounds are considered in terms of their
psychoacoustic attributes, in the perspective of the definition of some physical model or spectral
considerations aiming at the synthesis and parametric control of auditory icons. The fundamental
statement of Gaver is that the nonlinearity of the relationship between physical parameters and
perceptual results should be bypassed through a simplification of the model. The result is what
he calls cartoon sounds.
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9.5 Mapping

Auditory Display in general, and Sonification in particular, are about giving an audible repre-
sentation to information, events, and processes. These entities may take a variety of forms and
can be reduced to space- or time-varying data. In any case, the main task of the sound designer
is to find an effective mapping between the data and the auditory objects that are supposed to
represent them in a way that is perceptually and cognitively meaningful.

The chapter ? has been important for describing the role of mediating structures between
the data and the listener or, in other words, about mapping. The term audification was pro-
posed to indicate a “direct translation of a data waveform to the audible domain for purposes
of monitoring and comprehension”. Examples are found in electroencephalography, seismology
and, as explained in the introductory chapter of that book, in sonar signal analysis. In sonifica-
tion, instead, data are used to control a sound generation, and the generation technique is not
necessarily in direct relationship to the data. For instance, we may associate pitch, loudness,
and rhythm of a percussive sound source with the physical variables being read from sensors
in an engine. Audiation is the third term introduced here. As compared to audification and
sonification, it had less fortune among the researchers. It is used to indicate all those cases where
recall of the sonic experience (or auditory imagery) is necessary. Kramer gives a nice description
of “parameter nesting”, a method to codify many data dimensions (multivariate information)
into sound signals. He distinguishes between loudness, pitch, and brightness nesting. Nesting is
resemblant of the procedure proposed by Patterson to design auditory warnings ?. The chapter
continues discussing the advantages and drawbacks of realistic vs. abstract sounds. Then, the
important issue of parameter overlap and orthogonality is discussed. When the same audible
variable is used on different time scales, it is likely that a loss of clarity results. More generally,
changing one sound parameter may affect another parameter. This may be advantageous for
mapping related variables, otherwise it may be a problem. It is argued that orthogonality be-
tween parameters, although desirable in principle, is very difficult if not impossible to achieve.
The design of a balanced display can be achieved through a combination of scaling, multiple
mappings, and experiments with map sequencing and interpolation. In designing a sonification,
it is important to use beacons, which are points of orientation for data analysis. The concept of
beacon is also used in navigation of virtual environments, even with an acoustic sense. In this
chapter, conversely, the orientation provided by beacons is not necessarily spatial. Beacons are
considered as the cornerstones to build mappings, or routes from data to auditory parameters.
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Examples are given in process monitoring and data analysis, where the role of emerging gestalts
from multivariate auditory streams is recognized. Data are often naturally grouped in families
and it is useful to preserve the relationships in the auditory display. A way to do that is by using
streams, as defined and researched by Bregman ?. Data may be mapped to streams through per
stream, inter-stream, and global variables. These concepts are exemplified well by an example
with different plant species. A problem with streams is that it is not possible to follow more than
one at a given time, even though ensembles of streams may be perceived as gestalts or, as some
other people like to say, as textures. The chapter is concluded by discussing problems related to
memory, cognition, and affection. A major problem is how to recall the mappings (see also ?).
This can be done via metaphors (e.g., high pitch= up) or feelings (e.g., harsh= bad situation), and
the interactions between the two. These aspects are still very hot and open for further research
nowadays.

9.5.1 Direct (Audification)

The most straightforward kind of mapping is the one that takes the data to feed the digital-
to-analog converters directly, thus playing back the data at an audio sampling rate. This can
be of some effectiveness only if the data are temporal series, as it is the case in seismology.
The idea of listening to the data produced by seismograms to seek relevant phenomena and
improve understanding is quite old, as it is described in two papers of the sixties ??. After
those exploratory works, however, no seismic audio activities had been recorded in the literature
until the presentations made at early ICAD conferences and until the paper ?. Here it is argued
that audification (direct transposition of data into sound with a minimal amount of processing)
makes sense in a few cases, but seismic data offer one such case because they are produced by
physical phenomena (elastic waves) that are similar for propagation of earthquakes in rocks and
for propagation of acoustic waves in air. So, if the seismic signals are properly conditioned and
transposed in frequency, they sound pretty natural to our ears, and we can use our abilities in
interpreting noises in everyday conditions. The authors gives a clear and brief introduction to
the problems of seismology, distinguishing between exploration seismology and planetary seis-
mology, and highlighting the compelling explosion discrimination problem. Then, an extensive
list of possible applications of auditory display in seismology is given, including education for
operators, quality control of measurements, and event recognition. One of the main motivations
for using auditory display is that there are important events that are difficult to detect in visual
time-series displays of noisy data, unless using complex spectral analyzes. Conversely, these
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events are easily detected by ear. There are several problems that have to be faced when trying to
sonify seismic data, especially related with the huge dynamic range (> 100 dB) and with the fre-
quency bandwidth which, albeit restricted below 40 Hz, spans more than 17 octaves. Many of the
mentioned problems cause headaches to visual analysts as well. In order to let relevant events au-
dible, the recorded signals have to be subject to a certain amount of processing, like gain control,
time compression, frequency shift or transposition, annotation, looping, stereo placement. All
these techniques are described fairly accurately in the text, with special emphasis on frequency
doubling: for this effect it is recommended to derive the analytic signal via Hilbert transform
and from this calculate the double-frequency signal via straightforward trigonometric formulas.
The technique works well for sine waves but it is not free of artifacts for real signals. The most
valuable part of the article is in the audification examples, which are given with reference to the
soundfiles enclosed in the companion CD. First, synthetic data from an earth model are sonified,
then field data of different types are analyzed. Listening to these examples is the best way to
have an idea of the possibilities of audification of seismic data. A remark is given for annotation
tones, which are necessary to help orienting the listener. These are similar to beacons in other
applications of auditory display, but Hayward recommends to make them “similar to the signal
or the listener will perceive two unrelated streams and it will be difficult to relate the timing
between the two”. This problem of the accurate temporal localization of diverse auditory events
is a relevant phenomenon that should be always considered when designing auditory displays.
To conclude, the contribution by Hayward has been very important to launch further studies and
experimentations in seismic audification. As the author wrote, the best use of audification will
be obtained when these techniques will be integrated with visual displays and given to operators
for their routine work.

9.5.2 Naturalistic

In some cases, it is possible to use natural or mechanical sounds to convey information of various
kinds. This is especially effective when the information is physically related to the reference
sound sources, so that our everyday physical experience can be exploited in interpreting the
sounds.
The chapter ? is probably the first rigorous study that tries to compare the auditory and visual
sensory channels in a complex monitoring task, where actions have to be taken in response to a
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variety of configurations of system variables. The system to be monitored is the human body,
and the visual display is chosen from standard practice in anesthesiology. The auditory display
is designed from scratch as a hybrid of realistic and abstract sounds. The work of Gaver ? is
explicitly cited as a source of design inspiration and guidelines for realistic (everyday) auditory
displays. Moreover, layers of parameters are superimposed on the auditory streams by the
principles of parameter nesting ?. No use of spatial cues in sound is made. This choice is
theoretically well founded as it is supported by the evidence that, while space is the principal
dimension of vision, time is the principal dimension of audition. This echoes the theory of
indispensable attributes by Kubovy ?. The task under analysis and the data here considered
have a temporal structure and are inherently concurrent. The authors make sure that there is
informational equivalence between the visual and the auditory display, and this is assessed in the
early experimental stages by measuring the accuracy in recognizing different configurations. The
experimental results show that, for this situation, users react faster with the auditory display than
with the visual display. Moreover, a mixed audio-visual display does not give any advantage
over the pure visual display, thus indicating a visual bias in presence of dual stimuli. The authors
emphasize the emergence of gestalts from complex auditory information. In other words, users
are capable to process an ensemble of audio streams as a whole and to readily identify salient
configurations.

9.5.3 Abstract

A good mapping can be the key to demonstrate the superiority of auditory over other forms of
display for certain applications. Indeed, researchers in Sonification and Auditory Display have
long been looking for the killer application for their findings and intuitions. This is especially
difficult if the data are not immediately associable with sound objects, and abstract mappings
have to be devised. Some researchers looked at the massive data generated by stock market
exchanges to see if sonification could help enhancing the predictive capabilities of operators.
The paper ? documents a large-scale effort aimed at providing a multimodal display for the
exploration of stock market data, where 3D immersive graphics is combined with 2D manipulated
voice sounds. For visuals, the proposed mapping supports focus and context. For sounds, at
the schema level a Bid-Ask landscape metaphor is used, where the audio echoes the changing
tension between buyers and sellers. At the perceptual level, data are mapped to timbre (bids vs.
asks), loudness, and pitch. With a within-subjects test, the prediction capabilities under auditory,
visual, or multisensory feedback are tested. Data show that the auditory and multisensory
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feedbacks perform similarly, thus indicating sensory redundancy for this specific application.
Analyzing comments, it emerged that such redundancy turned into increased sense of presence
and decreased workload.

9.5.4 Musical

Music has its own laws and organizing principles, but sometimes these can be bent to follow
flows of data. The paper ? is an example of the use of music for auditory display of complex
time-varying information. The idea is simple: since many people use low-volume FM radio
to mask the background noise of their offices, why not using a continuous musical stream that
has the additional property of varying according to important system information? In this case
the information comes from accesses to web servers, as these are of interest for webmasters and
system administrators. Not much space is dedicated to how the mapping from data to music
is actually done, even though it is reported that the authors used “a musical structure that’s
neutral with respect to the usual and conventional musical themes”. Instead, the paper focuses
on architectural aspects of the auditory display system. Three software layers collaborate in a
pipeline that goes from the HTTP requests to the sound rendering. In the middle, a Collector
processes the events provided by the web server and sends requests to the WebPlayer component.
The information is of three different kinds: server workload, errors, details on normal behavior.
Within an Apache module, information is processed according to a set of rules and directives
describing which data are relevant and how they must be mapped into sounds. Support for
visual peripheral display is also provided. Unfortunately, the project web address does not work
anymore and no further details are given about musical mapping strategies. However, details
on a user study and the musical material used are given in the previous paper ?.

9.6 Sonification

Sonification can be considered as the auditory equivalent of graphic representation in the visual
domain. The main goal of sonification is to define a way for representing reality by means
of sound. Carla Scaletti ? proposed a working definition of sonification as “a mapping of
numerically represented relations in some domain under study to relations in an acoustic domain
for the purpose of interpreting, understanding, or communicating relations in the domain under
study.”In the following sections we analyze two aspects of sonification, i.e. the definition of a
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methodology for representing information by means of sound (Section 9.6.1) and sonification in
an interactive context (Section 9.6.2).

9.6.1 Information Sound Spaces (ISS)

In his thesis work ?, Stephen Barrass aims at defining a methodology for representing information
by means of sonification processes. The initial motivation of Barrass’ work could be summarized
in the following quotation: “The computer-based workplace is unnaturally quiet...and disqui-
etingly unnatural...”. In other words, the starting point of his work was the problem of the
development of auditory displays for the computer.

The first goal becomes, thus, to solve the contrast between the informative soundscape
of the everyday world and the silence of the computer-based workplace. On the other side
the danger is that a “noisy/musical” computer could easily become an annoying element. This
concern, according to Barrass, highlights the need to design useful but not intruding/obsessive
sounds.

More into detail, his thesis addresses the problems pointed out by previous researchers in
the field of auditory display, as:

the definition of a method for evaluating the usefulness of the sounds for a specific activity

the definition of methods for an effective representation of data relations by means of
sounds

the achievement of a psychoacoustic control of auditory displays

the development of computer aided tools for auditory information design

Also, the auditory display specifications should be device-independent.

Barrass illustrates a set of already existing approaches to auditory display design. A
possible classification of these approaches is:

Syntactic and grammar-based (es. Morse code, Earcons)
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Pragmatic: materials, lexicon and/or palette

Semantic: the sound is semantically related to what is meant to represent

In particular, the semantic relationships can be subdivided in:

Symbolic: the signifier does not resemble the signified.

Indexical: the signified is causally related to the signifier (e.g. the sound of a tennis ball).

Iconical: the signifier resembles the signified that is the case of a picture/a photograph.

About the concept of sign in general, Barrass writes: “The concept that the sign stands for is
called the “denotation” and additional signifieds are called “connotations”. Cultural associations
generate connotations by metonym and metaphor. A metonym invokes an idea or object by some
detail or part of the whole - a picture of a horseshoe may be a metonym for a horse. A metaphor
expresses the unfamiliar in terms of the familiar - a picture of a tree may be a metaphor for
a genealogy.”This point will be very important in the definition of Barrass’ methodology for
auditory display design described in the following chapters.

¿From a practical point of view, another kind of problems arises in the auditory display
design: Identifiability and learnability, i.e. how much intuitive is the auditory display. Also,
potential problems have to be considered, concerning masking, discriminability and conflicting
mappings.

Once defined the state of the art and the opened problems, Barrass proposes different
approaches for auditory display design. Among the others calls a Pragmatic Approach and a
Task-oriented Approach. The Pragmatic Approach concerns design principles of warnings and
alarms. A set of rules can be asserted as:

Use two stages signals 1) attention demanding 2) designation signal

Use interrupted or variable signals

Use modulated signals

Do not provoke startling
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Do not overload the auditory channel

A Task-oriented Approach takes a particular role in the following developments of the
Thesis, in terms of Sound Design for Information display. In this context, three main tasks can
be assigned to auditory displays:

Analysis/diagnosing

Monitoring

Controlling (Create, delete, enter, edit etc.).

Here a task is denoted as a “small closed actions.”From an operative point of view, a set
of purposes of a task could be to confirm, to identify, to judge and to compare.

Task analysis is a method developed in Human-Computer Interaction (HCI) design to
analyze and characterize the information required in order to manipulate events, modes, objects
and other aspects of user interfaces. The methodology is based on Task analysis and Data
characterization (TaDa). According to this analysis, the information requirements necessary for
an information representation on a certain display addressing a specific kind of user are defined.
The ultimate goal is, thus, the user. User-centered design has become a prominent topic in
Human-Computer Interaction. One of the possible strategies to take into consideration the user
from the very first step of the design process is to use a story to describe a problem. The tools
become storyboards, scenarios, interviews, and case studies.

At this point, it becomes important to define what do we mean by means of the term
information. Information is characterized by a type, a range and an organization typology. A
“reading ”attribute is also defined with two values: conventional (to be learned) vs. direct
(intuitively understandable). The type is of four kinds: boolean, nominal, ordinal and ratio.

The organization can be in terms of category/set, time, space, mnemonic (e.g. alphabet) or
continuum. It is, in other words, a case-based design from stories about listening. The stories in
many professional design journals and magazines are case-studies, which convey information
about a good design in a way that can be easily understood and assimilated. In HCI an intelligent
borrowing of good ideas as well as reuse of a previously successful design is one of the main
strategies. Barrass calls the case studies with the term “Earbenders ”, from a colloquial expression



9.6. Sonification 359

denoting short stories coming out from everyday life and worthy to listen to (to bend one’s ear
to).

It is then a problem of collecting and selecting good data. In order to collect “stories”,
Barrass proposes techniques like asking questions as: “During the next few weeks if you notice
yourself using your hearing to help you, say, find a lost pin, or search for hollow spaces in a wall,
or notice something wrong with your car, or tell whether the dog is hungry, anything at all, then
please email me with a brief story about the occasion.”

In order to define e methodology, Barrass characterizes application scenarios by means of
a story and some precise keys:

A “critical” question

An answer

A characterizing subject

A characterizing sound

Possible approaches for Sound Design are: Metonymic (e.g. Gaver’s Auditory Icons),
Metaphoric (e.g. “stock prices and internet traffic don’t normally make sounds, so are likely
candidates for a metaphorical design. But what metaphor to choose?”) and Pattern-based. A
pattern is a regularity in the mapping between the problem and solution domains. The pattern
method begins by identifying features shared by different solutions to the same problem that may
capture patterns in the mapping between domains. The pattern analysis is realized by appending
a description of auditory characteristics to each EarBenders case. Finally, the characteristics of
sound are: Nature (everyday, musical, vocal), Level (analytic vs. holistic), Streams (in the sense
of Bregmann) and others.

Examples of EarBender design by means of database of Earbenders and keywords-based
searching is presented. In the first Appendix of Barrass’ thesis a rich EarBenders stories database
is available.

Another important part of Barrass’ work is the definition of an Information-Sound Space,
what he calls a cognitive artefact for auditory design. Barrass starts from the example of the
Hue, Saturation, Brightness (HSB) model for the representation of the “color space” and from a
usual representation of a color choosing tool by means of a circle with the hues corresponding
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to different sectors as a function of the angle, the saturation levels mapped along the rays and,
as a third parameter, the brightness controlled by means of a separated slider. In order to
build a similar tool, representing a “sound space”, Barrass analyzes many different possibilities
of mapping from one of the dimensions of the color chooser to different sound parameters. In
Barrass’ ISS (Information Sound –Space) representation, the third dimension (the slider) becomes
the height of a cylinder built on the circular pedestal of the color chooser. Barrass obtains a
dimension with a categorical (not ordered) organization of the information (the sectors of the
circle) a dimension with a perceptual metric (ordered) along the radial spokes and a vertical axle
also with a perceptual metric as well. Then, he considers different possibilities of attribution of
the parameters. Pitch, formants, static and dynamic timbers are alternatively mapped to the circle
and the different mappings are tested with listening experiments. Finally a “sound chooser” is
designed, where the three dimensions of the ISS are related to Timbre, Brightness and Pitch (TBP),
the brightness corresponding to the radial dimension and the pitch to the height dimension. As
a raw material for sound design, Barrass uses traditional musical instrument samples from the
McGill University Master Samples (MUMS) collection.

Barrass designs and implement a tool for computer-aided design for auditory display
that integrates the TaDa approach to auditory display design with an interface for sound ma-
nipulation. A TaDa panel allows the user to define the characteristics of the information to be
represented. Consequently, a set of rules determines the kind of tool for sound manipulation (or
“tailoring”) to be used. For example, a spiral or the line tools allow to draw and then to move
along a spiral or a straight line in the 3D representation of the ISS.

In the last chapter of his thesis, Barrass describes the design of auditory displays for dif-
ferent information processing scenarios. The first one is the RiverAndRain scenario about the
organization of “a new sewerage treatment works to minimize the environmental impact on a
river system.” The second one, called PopRock concerns the assessment of the risk in digging
a mineshaft. The third is the cOcktail scenario, a modelling of climate change according to the
measurements of oxygen isotopes in sea-bed drill-core sites. The last one is the LostIn-Space
scenario, concerning a visualization of 3D irregular structures, where the problem is to be able to
navigate back to some place. The author claims that “Experiences with the multimedia interfaces
that were implemented shows that the sounds can provide information that is difficult to obtain
visually, and can improve the usefulness of the display.”

In a following paper ? Barrass and Kramer discuss about sonification scenarios envision-
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ing applications made by nano-guitars and garage-band-bacteria revealing themselves to the
stethoscope of the doctor. From this science fiction-like application, a long series of consider-
ations about sonification starts and an overview of the subject is drawn. The work analyzes a
set of already existing applications ranging from auditory displays for visually impaired people
to auditory feedback for people working together. The main points raised by the authors in
terms of advantages of sonification are the possibility of perceiving cycles or temporal patterns
in general as well as very short events and the possibility of perceiving multidimensional data
sets (the ear is polyphonic). Problems of learnability, synthesis/design skills, unpleasantness
and incomprehensibility are discussed with respect to different approaches to auditory display
design such as earcons, auditory icons and parameter mappings.

A work similar to Barrass’ for the representation of timbre space was done by ?. They present a tool
for accessing sounds or collections of sounds using sound spatialization and context-overview
visualization techniques. Audio file are mapped with symbols and colors and displayed in a 2D
environment. This view is not unique: there are multiple view: starfield view, TreeMap view,
HyperTree view, TouchGraph view and a file information window is always available for detailed
information. In addition to the visualization components there are several interaction devices.
This devices allow the filtering on the sounds. One mechanism uses sliders to control various
arbitrary user classifications. These classifications are related to specific sound classifications
as well as the shape and color properties of an object. Another mechanism is a simple text
based filtering mechanism that uses arbitrary user classifications of the objects. The system
seem to improve performance in browsing audio files, but sometimes lead to ambiguity as users’
classifications of sounds may differ. Hyperbolic layout (HyperTree) for browsing makes it both
easy and enjoyable. The TreeMap view presented poor results and visualization of the data.

9.6.2 Interactive Sonification

In ? the authors propose a new approach to data sonification, starting with a deep investigation
on the link between sound and meaning. The idea is to find a way to use data sonification without
using musical listening, e.g. without the need of a training time. The Model Based Sonification
that the authors propose provides a natural mean for interacting with a sonification system and
allows the development of auditory displays for arbitrary data sets. Both results are achieved
using a virtual object in the interaction and a parameterized sound model as auditory display.
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The authors argue that the MBS has many advantages: fewer parameters to be tuned, a natural
connection between sound and data, a softer learning slope, an intuitive interface, a continuous
natural control etc. The MBS has been illustrated using an example of particle trajectories with
a prototype of a tangible physical representation-interface. There is no real evaluation of the
sonification method and of the interaction.
- Continuous sonic feedback from a rolling ball
The paper written by Rocchesso and Rath ? explains how continuous sonic feedback made by
physical models can be used in Human-Computer Interaction. The control metaphor which is
used to demonstrate this statement is balancing a ball along a tiltable track. The idea of using a
continuous feedback comes out by simply analyzing the nature behavior: trigger sounds are quite
unusual, while we are always using continuous sounds to be informed about what is happening
around us. Sonic feedback has the advantage that it can help us without changing our focus of
attention: the audio channel can improve the effectiveness and naturalness of the interaction.
The physical model of a rolling ball is used to perform the test that has been analyzed later in the
paper: this sound is particularly informative, conveying information about direction, velocity,
shape and surface textures of the contacting objects.
The rolling model is realized in a hybrid architecture with higher level structures: the lowest
level is the physics-based impact model, while the higher one is the perception-oriented structure
through a connecting signal-processing algorithm. A rolling filter is used to reduce the dimen-
sions of the impact model simply to the perpendicular to the global direction of the surface.
The main characteristic of this model is its reactivity and dynamic behavior: “the impact model
used produces complex transients that depend on the parameters of the interaction and the in-
stantaneous states of the contacting objects”.
Considering the higher level modelling, the authors pointed out the importance of macroscopic
characteristic renderings, such as the periodic patterns of timbre and intensity which are featured
by a rolling sound: the rolling frequency is very important for the perception of size and speed.
The main idea here is to take into account rolling objects that do not show perfect circular sym-
metry: the height of the center of mass will vary during the movement performing macroscopic
asymmetries that lead to periodic modulations of the effective gravity force. The use of this
approach has many advantages that can be summarized as follows:

1. the synthesized sound is always new and repetition–free

2. there is no need to store large amounts of sound samples
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3. all the ecological attributes can be varied on the fly allowing a continuous real time inter-
action with the model

The last part of the paper describes the test which has been done to verify the naturalness
and effectiveness of interaction. The balancer metaphor has been used: the subjects are asked to
balance a virtual ball on a tiltable track, with and without a video feedback (the target areas were
realized in four different sizes). The test results are very interesting:

1. the sound of the virtual rolling ball is easier to recognize than the sound of a real rolling
ball; users can describe better the physical characteristics (e.g. the size) of the virtual ball
than the real one

2. subjects intuitively understood the modelled metaphor without a learning phase

3. the cartoonification approach appears to be effective in such a control metaphor

4. the performance measurements show that there is an improvement from 9% for bigger
displays to 60% for smaller displays

5. all subjects solved the task using auditory feedback only

This investigation suggests to the authors that continuous feedback can be used for sensory
substitution of haptic or visual feedback and equilibrium tasks can be seen as possible exploita-
tion areas, beside the more obvious one: video games and virtual environments.

- Interactive simulation of rigid body interaction with friction-induced sound generation

Another example of interactive sonification is done in ?: the paper starts with the description of
a complete physical model of the complex mechanics of friction, taking into account numerical
methods to make the model running real time on low cost platforms. The main idea of the friction
model is based on a “bristle-based” interpretation of friction contact which is made by a number
of asperities (e.g. microscopic irregularities) of two facing surfaces. The LuGre friction model
and its development made by Dupon are analyzed in order to be improved: a parameter has been
added in the definition of the friction force in order to simulate scraping and sliding effects other
than the stick-slip phenomena. The model is divided in two main parts: the excitation and the
resonators of the vibrating system. The resonating objects are modelled according to the modal
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synthesis approach as lumped mechanical systems. In order to use the model in interactive
settings (e.g. real time) a numerical implementation is discussed. A decomposition of the system
into a linear differential system coupled to a memory-less non-linear map is done in order to
apply efficient numerical methods to the model (e.g. K method). The final part of the article is
the discussion of a number of applications of the model to the simulation of many everyday fric-
tion phenomena: all these examples explain how physical models can be used in a multimodal
context, such as sound modelling for computer animation. The model has been implemented as
a plugin to pd (Pure Data) and then used in several examples of acoustic systems with induced
frictional vibrations. The animations presented in the paper are the following: braking effects,
wineglass rubbing and door squeaks. All these examples show a high degree of interactivity
of the model: the user can control one of the virtual objects in the animation through a simple
pointing device (e.g. a mouse), controlling at the same time some of the physical parameters
involved in the friction (e.g. the force acting on the exciter). The positions and velocities which
are returned by the synthesis engine can be used to drive both the graphic rendering and the
audio feedback.

9.7 Sound Design

9.7.1 Sound Objects

In ?, Michel Chion tries to define an omni-comprehensive but synthetic review of the thinking of
Pierre Schaeffer. The book is a considerable effort aiming at making the intuitions and concepts
developed by Schaeffer systematic. The main thesis of the book are the definition of Acousmatic
music, the definition of Reduced Listening, the definition of Concrete (vs. Abstract) Music, the
definition of Sound Object and the definition of a new Solfège for the development of a new
music. All these concepts provide a summa of the theoretical work of Schaeffer ?. Acousmatic
comes from the ancient Greek and means a sound that we hear, without seeing the source.
Acousmatic is here meant as opposed to Direct Listening. The acousmatic situation corresponds
to an inversion of the normal way of listening: it is not any more a question of studying how a
subjective listening deforms the reality but the listening itself becomes the phenomenon to study.
Two listening experiences due to the use of the tape recorder are mentioned as fundamental for
the evolution of the concept of acousmatic music: the looped tape and the cut of a sound of a
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bell (a sound without the attack). These kind of experiments allow us to become aware of our
perceptive activity. This awareness is also called Epoché and is directly related to the second
main concept defined by Schaeffer: the Reduced Listening. This new way of listening is thought
as opposed to what he calls trivial listening (a listening that goes directly to the causality of sound
events), to the pragmatic listening (a gallop can have the meaning of a danger that is possibly
coming or be just a rhythmical event) and cultural listening (that looks for a meaning). In other
words, the Reduced Listening places out of our consideration anything related in a more or less
direct way to a sound (sources, meanings, etc.) and considers only the sound itself. The sound
itself becomes an object on its own. In order to define the concept of the Sound Object, Schaeffer
adopts a negative approach. A sound object is nor the body of the sound source (sounding
object), neither a physical signal. The sound object is nor a recorded sound neither a symbol on
a score. Also, the sound object is not a state of our spirit. These negative specifications delimit
what in positive could be defined as “the sound itself”, a definition that could be vague. By
means of the manipulation of sound objects it becomes possible to build a new kind of music: the
Concrete Music. Classical music starts from an abstract notation and the musical performance
come afterwards. Conversely, the new music starts from the concrete phenomenon of sound and
tries to extract musical values from it. In other words,recalling the difference between phonetics
and phonology, the whole work of Schaeffer can be considered as a path from Acoustics to what
he defines as “Acoulogy”, i.e. from a gross sound, conceived as an acoustic object, to a sound
that is analyzed and considered in a musical sense. The development of a complete method
for the analysis of sounds and the synthesis of new sounds as well as the production of a new
music is the ultimate goal of the work of Schaeffer. The plan for this new methodology forms the
“new Solfège” and is articulated into 5 steps: typology, morphology, characterology, analysis and
synthesis. Schaeffer developed only the first two steps, while the other three were only planned.
More into detail, Typology performs a first approximate sorting (a kind of elementary morphol-
ogy). Morphology describes and qualifies sounds and defines classes. Characterology realizes a
sort of taxonomy, a kind of new Lutherie. Analysis defines musical structures by means of the
perceptual fields. Finally, Synthesis forms the innovative Lutherie, i.e. a way for the creation
of new sound objects according to the results of the analysis. A noteworthy remark is that in a
preliminary definition of what he calls Analysis, Schaeffer defines the analytical tools as Natural
Perceptual Field, i.e. pitch, duration and intensity. These criteria are in a sense “natural”, even
if, for what concerns pitch, it seems to be quite a traditional choice.

The typology-morphology task is developed quite into detail. The whole process is defined
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in terms of identification and qualification. In other words the main tasks are those of isolating
an object from the context and then describing its properties. The crucial point in this activity is
the retrieval of the character, i.e. the structural elements (e.g. the timbre of a sound) with respect
to the values (or version) of a particular sound, i.e. the variable elements that do not contradict
the character (e.g. the three perceptual fields). The three tasks of the typo-morphology are: iden-
tifying ( typology), classifying (typology) and describing (morphology) within the perspective
of a reduced listening, i.e. independently from any reference to causes/origins of the sounds or
to what they could evoke).

In the context of a new Solfège, the equivalent of a musical dictation becomes the task of
recognizing and defining the version of a sound object and the art of improving the listening skills.

One of the main points in order to achieve an identification, is the definition of some
segmentation criteria, able to isolate the single sound objects. This is not evident, since one does
not want to use either musical criteria or natural systems of identification (source detection). The
chosen units correspond to syllables, i.e. units that are negligible in a linguistic context. The
distinction between articulation and prolongation, i.e. the identification of the breaking of the
sonic-continuum in subsequent and distinct elements (consonant) and sounds with a structure
that maintains its characteristics over time (vowel) is the way pointed out by the author.
Finally, the author defines a set of descriptors that have some generality, even if they are possibly
not completely exhaustive as the author claims they are.
The typology classification is based on the distinction between:

- Impulses,
- Iterations (sequences of impulses),
- Tonics (voiced sounds),
- Complex sounds (fixed mass but no pitch),
- Complex and variable sounds.

The classification of sounds is based upon the morphology principles, which subdivide
sounds according to:
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- Matter criteria (Mass, Harmonic timbre, Grain)
- Form criteria (Allure - a kind of generalized vibrato- and Dynamics)
- Variation criteria (Melodic profile and Mass profile)

Some recapitulation summary tables are reported at the end of the book, providing an
analytical grid for sound analysis
Murray Schafer ? as well talks about reduced listening by introducing the concepts of schizo-
phonia and of sound looping, both related to the studies of Pierre Schaeffer. Schizophonia points
out the new listening scenario introduced by the recoding supports and the reproduction by
means of loudspeakers, where the sound sources disappear from our visual feedback and are
thus separated (Schizo) from the sounds (Phonia). We do not see any source any more and the
sounds become objects on their own. This is what he calls the effect on audio of the electric
revolution.

9.7.2 Sounding Objects

In ? three partners of the European Project SOb (Sounding Object: www.soundobject.org)
draw their conclusions about the results of a three year-long research project from a high level
perspective. Their approach is somehow complementary with respect to the concept of Sound
Objects. Instead of analyzing and medelling sound by itself,the idea is to model the source in
terms of its physical behavior. Perception analysis, cartoonification/simplification and control
of physically meaningful parameters were the three main guidelines of the work. The term
cartoonification refers to the cartoons and to the technique of reducing the complexity of the audio
and visual information to its essential elements. These reduced elements are then emphasized
and clarified as much as possible in order to provide a cartoonified version of the reality. The
great advantage of a cartoonified version of reality is its augmented intelligibility. This in terms
of display purposes is extremely important.

After pointing out the lack of a comprehensive study on everyday sounds and the impor-
tance of these sounds in the context of auditory display design, the paper presents some examples
in terms both of sound design techniques and psychology of perception. First a psychology ex-
periment was conducted in order to explore the perception of sounds of filling/emptying bottles.
The principle of cartoonification was illustrated by the example of a cartoon mouse drinking
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with a straw. The sound is designed according to a precise decomposition of the physical events
occurring in the action. Each one of these events is then treated separately for what concerns
sound modelization
Another important aspect outlined by the authors is the temporal organization of the sounds
as in the case o a bouncing ball, where many similar events take place in a certain recognizable
sequence. If, from one side, one principle is the simplification of the physical model aiming also
at achieving a higher intelligibility, on the other side the possibility of using the complexity of
human gesture in order to control the parameters of the model is crucial in order to obtain a
natural sound object. As a result of their experience, the authors propose a set of principles for
sound design. According to these principles, the main identity of sounds can be defined and
reproduced by means of a set of basic physical interaction models reproducing the sound sources.
The quality of these sounds can be then refined and enhanced by means of signal processing
techniques. Finally a spatial and temporal organization of sound objects is of extreme importance
in order to enlarge the vocabulary and information contents that one wants to convey by means
of sound.

9.7.3 Cartoon Sounds

The potentialities of cartoon sounds were deeply addressed by William Gaver . In his work
Gaver investigates a fundamental aspect of our way of perceiving the surrounding environment
by means of our auditory system ??. A lot of research efforts were and are devoted to the study of
musical perception. Nevertheless our auditory system is first of all a tool for interacting with the
outer world in everyday life. When we consciously listen to or hear more or less unconsciously
“something” in our daily experience, we do not really perceive and recognize sounds but rather
events and sound sources. This “natural” listening behavior is denoted by Gaver as “everyday
listening” as opposed to “musical listening”, where the perceptual attributes are those consid-
ered in the traditional research in audition. As an example Gaver says: “while listening to a
string quartet we might be concerned with the patterns of sensation the sounds evoke (musical
listening), or we might listen to the characteristics and identities of the instruments themselves
(everyday listening). Conversely, while walking down a town street we are likely to listen to
the sources of sounds - the size of an approaching car, how close it is and how quickly it is
approaching” Despite the importance of non-musical and non-speech sounds, the research in
this filed is scarce. It is true, as Gaver says, that we do not really know how we are able to
gather so much information from a situation as the one of the approaching car described before.
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Traditional research on audition was and is concerned mainly with a Fourier approach, whose
parameters are frequency, amplitude phase and duration. On the contrary, new research on
everyday sounds focuses on the study of different features and dimensions, i.e. those concerning
the sound source. The new approach to perception is “ecological”. New perceptual dimensions
as size and force are introduced by Gaver. More generally the fundamental idea is that complex
perceptions are related to complex stimuli (Gaver talks also about “perceptual information”) and
not on the integration of elemental sensations: “For instance, instead of specifying a particular
waveform modified by some amplitude envelope, one can request the sound of an 8-inch bar of
metal struck by a soft mallet”. The map of everyday sounds compiled by Gaver is based on both
the knowledge about how a sound source first and the environment afterwards determine the
structure of an acoustical signal. “Sound provides information about an interaction of materials
at a location in an environment”.
At this point, Gaver makes a fundamental distinction between three categories: solid, liquid and
aerodynamic sounds. First he considers sounds produced by vibrating solids. Then he analyzes
the behavior of sounds produced by changes in the surface of a liquid. Finally he takes into con-
sideration sounds produced by aerodynamic causes. Each of these classes is divided according
to the type of interaction between materials. For example, sounds generated by vibrating solids
are divided in rolling, scraping, impact and deformation sounds. These classes are denoted as
“basic level sound-producing events”. Each of them makes the properties of different sound
sources evident.
At a higher level one has to consider three types of complex events: those defined by a “temporal
patterning” of basic events (e.g., bouncing is given by a specific temporal pattern of impacts);
“compound”, given by the overlap of different basic level events; “hybrid events”, given by the
interaction between different types of basic materials (i.e., solids, liquids and gasses). Each of
these complex events should potentially yield the same sound source properties, made available
by the component basic events but also other properties (e.g., bouncing events may provide us
information concerning the material but also the symmetry of the bouncing object). More in
general, we can hear something that is not the size or the shape or the density of an object, but
the effect of the combination of these attributes.
Finally Gaver tries to define map based on a hierarchical organization of everyday sounds In
conclusion, an interesting remark about everyday listening is: what is the result of a simple
question as: “what do you ear?” If the source of a sound is identified, people answer in terms of
an object and a space-time context, i.e. an event and, possibly, a place in some environment. Only
if the source is not identified, then the answer concerns the perceptual attributes of the sound.
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9.7.4 Soundscape

The word soundscape was born as a counterpart of landscape, denoting the discipline that studies
sound in its environmental context, both naturalistic and urbanistic. This discipline grew up first
in Canada, then in other countries as the Scandinavian ones, Australia and others. A milestone
publication on this subject was written by Murray Schafer ?. Entitled Soundscape, Schafer’s book
is a long trip through a novel conception of sound. One of the main goal is the recovering of
a clear hearing (claireaudience), and of a hi-fi (high fidelity) soundscape as opposed to the lo-fi
(low fidelity) soundscape of our nowadays world. A subjective and an objective perspectives
that are intimately related. One of the main thesis of the book is, in fact, that the soundscape
is not an accidental by-product of a society, but, on the contrary, it is a construction, a more or
less unconscious “composition” that can be of high or low quality. Evaluation criteria are widely
investigated by Schafer, leading to a basic classification of soundscapes into two categories: The
already mentioned hi-fi and lo-fi scenarios that will be described more in detail later on. This
forms the objective platform. On the other side, our subjective effort should be to pursuit a more
and more refined ear cleaning process, in order to become able to hear, evaluate and interact-with
sounds of the surrounding environments. Hearing is an intimate sense similar to touch: The
acoustic waves touch our hearing apparatus. Also, the ears do not have lids. It is thus a delicate
and extremely important task to take care of the sounds that forms the soundscape of our daily
life. Schafer even says that a lo-fi, confused and chaotic soundscape is an indicator of decadency
of a society.

The book is divided into three parts. In the first one the author considers the natural
elements (air, water, earth), the animals, the different geographical landscapes and, in a historical
perspective, sounds through the centuries with a particular attention to the effect of the industrial
and the electric revolutions. In the second part he analyzes the sounds in its sonic and semantic
contents. In the third part Schafer moves towards the definition of an Aesthetics of Acoustic
Design.

In the beginning of the book the definition of the main elements of a soundscape are
given: keynotes, signals and sound prints. Keynotes are sounds related to geography, belonging



9.7. Sound Design 371

somehow to our unconscious background and that are in the background. On the contrary a
signal is anything that we listen to and that conveys some information about the surrounding
environment. Finally a sound print is again something that belongs to the background, but, in
this case, it is a product of the human life and society. Sound prints are the main concern of
Schafer’s investigation.

In the historical sections, the analysis is always related to sociological aspects. The rural
soundscape, the industrial “sound revolution” and the consequences of the electric revolution
are analyzed in depth. In the pre-industrial society the SPL in a rural village was never above
40 dB, except when the bells or the organ played or a mill was working. On the other side
reports from the past tell us that the sound in the big towns of the pre-industrial era were unbear-
able. Nevertheless these sounds were variegated and their dynamics was spike-like and always
changing. The main sound sources were people screaming (especially hawkers, street musicians
and beggars), hand-worker activities, horses and other animals. As opposed to this kind of
sounscape, the industrial revolution introduces continuous, not-evolving and repeating sounds.
This is one of the main characteristic of a lo-fi soundscape. Schafer says that a spike-like and
varying amplitude envelope was substituted by a continuous, linear amplitude envelope, which
fixes a stable persistent, and unnatural (psychologically disturbing) sound dynamic evolution.

Besides the industrial revolution, the electric revolution plays a particularly relevant role
in the first part of the book: The electricity allows recording, reproducing and amplifying the
sound. How this influenced the soundscape is also matter of discussion in the book. In particular
the concepts of schizophonia and of looping a sound are investigated. Both of them are related to
the studies of Pierre Schaeffer and the definition of Concrete Music. Schizophonia points out the
new listening scenario introduced by the recording supports and the reproduction by means of
loudspeakers, where the sound sources disappear from our visual scene and are thus separated
(Schizo) from the sounds (Phonia). We do not see any performance any more and the sounds
become objects on their own.

Another crucial point of Schafer’s analysis is the diffusion and prevailing in modern (pop)
music of bass sounds with respect to mid-range frequency. All of these aspects deteriorate the
quality of the “soundscape”: the sound-to-noise ratio increases and we pass from a hi-fi soud-
scape to a lo-fi soundscape. The physical-symbolic meaning of low frequencies is quite clear:
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Basses propagate farther and longer in time than high frequencies. Due to diffraction phenomena
they pass obstacles. Also, it is difficult to localize a low frequency. The global effect is that of a
sense of immersiveness that cannot be achieved by other musical traditions. As an interesting
exception, Schafer observes that a very similar immersive effect was characteristic of a completely
different scenario as that of the ancient romanic and gothic churches, when a choir was singing.
In this case, it was the reverberation that created the effect of prolongation, diffraction and delo-
calization typical of bass sounds.

In the second part of his book, Schafer illustrates a proposal of notation for sounds. First,
he criticizes the ordinary representation, typically based on the spectrogram. He points out how
this kind of representation misleads the attention from the auditory channel to the visual one.
He suggests not to consider seriously an evaluation of a sound based on some diagram: “if you
don’t hear it, don’t trust it”. Then, he defines a sort of taxonomy of sounds, a set of parameters
relevant for the characterization of a sound timbre, and a symbolic notation representing these
parameters. This part ends with an extensive inquiry about how people in different cultural and
geographical contexts consider more or less annoying different categories of sound. An extremely
interesting collection of data emerges from such an analysis. In general, both for the produc-
tion of sounds as for the reaction that they generate, a sociological approach is always considered.

In the last part of the book, Schafer moves towards the definition of an Acoustic Design
practice. According to the author, the tasks of a sound designer should be: the preservation of
sound prints, especially those that are going to disappear, and the definition and development
of strategies for improving a soundscape. The principles that a sound designer should follow are:

- To respect for the ear and voice, i.e. the SPL of the soundscape has to be such that human
voices are clearly audible.
- To be aware of the symbolic contents of sounds.
- To know the rhythms and tempi of the natural soundscape.
- To understand the balancing mechanism by which an eccentric soundscape may be turned back
to a balanced condition.

An interesting example of sound design for a urban context is given by the work of
Karmen Franinovic and Yon Visell (http://www.zero-th.org/) with the sound installation Recycled
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Soundscape- Sonic Diversion in the City. The authors aim at stimulating people attention and
awareness about the soundscape of their town. The installation is formed by a mobile recording
cube (approximately 1 meter high), supporting a microphone placed in front of a parabolic surface
so that it created a sharp directional microphone for recording sounds from the environment. The
installation was completed by two mobile cubes, which played back the recorded sound after a
significant “recycling” processing. The idea is to get people involved in playful interactions in
the urban setting and to make them sensitive about the cacophony that surrounds us in the city
soundscape and let them try to put some order in the city. Also, “..these recordings of the context,
made by previous and current users of the system.. are woven into the remixed soundscape”, i.e.
the other idea of the installation Recycled Soundscape. Their work demonstrates how the human
behavior associated to a place, and our perception of it, may be disrupted by public diversions
that offer the possibility for the extension of perception and for collaborative creation.

9.7.5 Space and Architecture

We could start this section with a point outlined in ?, i.e. the lack of awareness about sound in
the architectural context. The main concern of architects is usually how to eliminate sound. No
attention is devoted to active intervention in architectonic projects.
In this section we will discuss about sound and space from two different point of view: the
relation between sound and architecture, meant as sonification of the environment, from one
side, and the technical aspects related to the acoustic space rendering.

A very first and well-known example of an architectural project that gave extreme im-
portance to sound was the Philips Pavilion at the Expo in Bruxelles in 1958. In that case Le
Corbusier and Xenakis built a structure, where the sound played a fundamental role: the work
was a organic project where space and sound were conceived together in order to be experi-
enced together as an unicum. The Philips Pavilion was more than a building at the fair, it was
a multimedia experience displaying the technological prowess of the Philips company by com-
bining light, sound, and color. The music was composed by Edgar Varèse and entitled ”Poème
électronique.” The radical concept behind this first experience and any other project involving
sound and architecture, is that sound modifies the perception of space. We could say that space
is in sound or that (a different) space comes out, when sound rings. In this sense a new discipline
as Electroacoustic Soundscape Design, i.e. the electroacoustic sonification of the environments
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and buildings, takes a relevant place in the frame of sound design.

For what concerns the technical aspects, ? provides a good and concise overview of the Real
Time spatial processing techniques available up to 1999 for room simulation with application
to multimedia and interactive HCI. He goes through the models of a) directional encoding
and rendering over loudspeakers, including conventional recording and ambisonic B format b)
binaural processing and c) artificial reverberation, with an extension to the dynamic case for
acoustic-source-distance rendering (Chowning’s model) and to Moore’s ray-tracing method. In
this overview the advantages and weak points of each approach, for instance the limit of the
“sweet spot” for the methods of point a). He states the criteria for establishing perceptually-
based spatial sound processing: Tunability, Configurability and, last but not least Computational
efficiency and scalability. In particular the first criterion includes the definition of source direction
(azimuth and elevation) and descriptor of the room. Configurability implies the possibility of
changing output format (headphones vs. different loudspeaker configurations). Finally the
author presents SPAT, the spatialization tool realized by IRCAM. The great novelty at the time for
such a tool was the high-level interface. SPAT does not present to the user physical parameters
but only perceptual parameters classified as: Source perception (source presence, brilliance
and warmth) b) Source/room interaction (room presence). c) Room perception (heaviness and
liveliness). These parameters are chosen according to the studies of psychoacoustic done at
IRCAM, specifically for the perceptual characterization of room acoustic quality. A series of
application scenarios is then analyzed, ranging from VR and multimedia to live performance
and architectural acoustics.

9.7.6 Media

In the book entitled “L’audio-vision. Son et image au cinéma”, ? two main thesis appears from
the very beginning of the book: a) Audiovision is a further dimension: different from bare vision
and different from bare audio b) Between images and sound (music in particular) there is no
necessary relationships. As an example of these thesis, he starts with the analysis of the movie
Persona by Ingmar Bergman and of “Les Vacances de Monsieur Hulot” by Jacques Tati. Chion
demonstrates that the bare vision of a sequence of mute images is something completely different
from the audiovision of the same sequence (as an example, the prologue of Persona is played
first without and then with the soundtrack). Also, a contrasting audio and video situation are
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not only possible but sometimes extremely effective from many point of views (e.g. the scene on
the beach in “Les Vacances de Monsieur Hulot”, where a group of annoyed people are “super-
imposed” on a joyful hilarious soundscape of children playing and screaming. The whole scene
is of a great comic effect). A second major point in his book is the evidence that our listening
is first of all vococentric, i.e. our principal source of information is the voice and the words of
other human beings. The text is, thus, a predominant element in the cinema. On the other side,
there are other kinds of listening beside the semantic (human voice) one: A causal listening and
a reduced listening. The first one is related to the class of sounds that involves a question of the
kind: “What is the source of this sound?”. The reduced listening is somehow the opposite: It
occurs, when we listen to the qualities of a sound by themselves independently from its cause
and meaning. This is related to the idea of acousmatic listening that will be discussed more in
detail later on (see also 9.7.1).
The author considers then the different roles of sound in a movie: Sound has the function of a
temporal (overlapping effect) of isolated events. Also, it functions as a spatial connection: the
acoustical unity of the environment of the scene (reverberation). Concerning the “ground” level
of sound, i.e. silence, Chion quotes Bresson: It was the synchronism between sound and image
that introduced silence. Silence as pauses in between sound events. The mute cinema, on the
contrary, is a continuous suggestion of sound. On the other side, there are sounds in the cinema
used as a metaphor of silence: Animals that cry in the far, clocks in the neighbor apartment, any
very soft but present (near) noise.
An interesting, possibly central matter of debate is given by the off-field sounds. An articulated
classification follows the analysis of all of the possible situations. Altogether with the “off sound”
(the sound that does not belong to the time and the space of the scene) and the “in-sounds” (the
sounds, whose sources appears in the scene), they form the so-called tri-circle. The off-field
sounds can take different attributes: acousmatic, objective/subjective, past/present/ future, giv-
ing raise to a wide scope of expressive possibilities. Also, off-field sounds can be of different kind,
trash (e.g. explosions, catastrophes noises), active (acousmatic sound that provokes questions as
“what is it?” or “where is it?”) and passive (they create an environment that involves the image
and give a feeling of stability).
Another dimension of a sound is its extension: null extension corresponds to an internal voice,
while a wide extension: corresponds, for example, to a situation, where the traffic sounds from
the near street are audible and amplified in an unrealistic way. Expressive effects can be obtained
by playing with variations of the extension within a scene (e.g. alternatively from outdoor to
indoor and to the internal dimension).
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A further element is the definition of the listening point. One possibility is to refer to a spatial
perspective: from which point in the space we listen? But a subjective point of view is possible
too: which character is listening? A particular case is given by weak sounds, which give the
impression to be heard only by a character, as if the sounds were near to the ears. In all the
previous examples, the unrealistic element is essential. In general, there is no reason for the
audiovision relationships (between images and sounds) should be the same as in real-life. A
stylization strategy of representation is possible and can open wide and various horizons for
expressivity. This is also related to the discussion of Section 9.7.3.
In the followings of his book, Chion points out the difference between definition and fidelity:
definition is a technical term denoting the range of reproduction/rendering possibilities of the
system. On the contrary, fidelity is a dangerous term: fidelity evokes realistic reproduction that
is a very debatable concept: cinema is also a metaphoric representation, involving augmentation,
unrealistic points of view, distorsion of time and space, of soundscape and landscape. Sound
should be veridical, not realistic. The goal of a veridical sound is to render the associated sen-
sations, not to reproduce the sound realistically. A realistic sound, if detached from the image
is often not comprehensible, a deception. Sound technicians are skeptic about the possibility of
recognizing sources from sounds. Chion quotes a couple of examples: The same sound can be
used in relationship with a smashed head in a war movie or a squeezed water-melon in a comic
movie. The same gargling sound can be used for a tortured Russian prince (Andrej Rublov by
Tarkowskj) and for the gurgling of Peter Sellers in a comic movie.
Another interesting aspect is the dialectics between realistic and unrealistic. Reverberation con-
tributes to a realistic rendering of the spatial dimension of sound. On the other side, unrealistic
reverberation can give an impression of dematerialization and symbolism. An interesting case
of unrealistic sounds is given by the sounds and noises that children use to evoke the life of their
puppets, dolls and little cars (especially their movement): Where do they come from? In general,
in movie sound tracks, noises were always neglected with respect to dialogues and music. Only
with the Dolby and multichannel systems, noise has gained a relevant place. Another important
aspect of sound in audiovision is the dynamic changes of the acousmatic nature of sounds. For
example, a deacousmatization wisely prepared, is always extremely effective and important in
the dramatic evolution. On the contrary, the acousmatization of the final part of an event, e.g.
a violent scene is also a very common technique adopted in cinema. A significantly different
case is given by the television. The main point between cinema and television is the difference
of position occupied by the sound. Television is rather an illustrated radio. The sound of words
has always a principal role, in a sense it is never off-field. Even in the news the images are rather
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a “decoration” of the verbal information. A typical TV effect is given by different voices that
speak together, provoking a short circuit w.r.t the visual element. The radio-like attributes of the
television increases when the TV is constantly switched on, for example, in public places. In this
case the image is not any more the structural element, but only the exception, the “surprise”. An
interesting case deserving some considerations is given by tennis matches. Tennis is the most
“sonified” sport: the different impact sounds of the ball, the cries of the players, the audience
exclamations. It is the only sport, where the speaker can stop talking even for 30 seconds and
more.
Finally, it is necessary to spend a few words about video-clips. The structure of video-clips and
their stroboscopic effect make them a different case. It is not any more a dramatic time, but rather
the turning of the faces of a prism. The success of a video-clips relies mainly on a simple punc-
tual synchronism between sound and images. Also, in the video-clip sound looses its linearity
character.
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About this chapter

In this chapter, we provide an overview of state-of-the-art algorithms for the automatic descrip-
tion of musical audio signals, both from a low-level perspective (focusing on signal characteris-
tics) and a more musical perspective (focusing on musically-meaningful dimensions). We also
provide examples of applications based on this description, such as music identification, mu-
sic browsing and musical signal transformations. A special focus is put on promising research
directions.

10.1 Introduction

Music Information Retrieval (MIR) is a young and very active research area. This is clearly
shown in the constantly growing number and subjects of articles published in the Proceedings of
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the annual International Conference on Music Information Retrieval (ISMIR, the first established
international scientific forum for researchers involved in MIR) and also in related conferences
and scientific journals such as ACM Multimedia, IEEE International Conference on Multimedia
and Expo or Wedelmusic, to name a few. In MIR, different long-tradition disciplines such
as musicology, signal processing, psychoacoustics, information science, computer science, or
statistics, converge by means of a multidisciplinary approach in order to address the wealth of
scenarios for interacting with music posed by the digital technologies in the last decades (the
standardization of world-wide low-latency networks, the extensive use of efficient search engines
in everyday life, the continuously growing amount of multimedia information on the web, in
broadcast data streams or in personal and professional databases and the rapid development of
on-line music stores as e.g. Apples iTunes, Walmart or MusicMatch). Applications are manifold,
consider for instance automated music analysis, personalized music recommendation, on-line
music access, query-based retrieval (e.g. “by-humming,” “by-example”) and automatic play-list
generation.

Among the vast number of disciplines and approaches to MIR (an overview of which can
be found in Downie [2003a], content processing of audio signals plays in important role. Music
comes in many forms but content-based audio processing is only concerned with one of them:
audio signals.1 This chapter does not deal with the analysis of symbolic music representations
as e.g. digitized scores or structured representation of music events as MIDI. The relatively
new direction of research concerning the automated analysis of social, cultural and market-
ing dimensions of music networks is addressed in XXXREF TO WIDMER CHAPTERXXX, see
also Cano et al. [2005a].

This section defines the notion of music content at diverse levels of abstraction and what
we understand by processing music content: both its description and its exploitation. We also
shortly mention representation issues in music content processing. Section 10.2 provides an
overview of audio content description according to low-level features and diverse musically-
meaningful dimensions as pitch, melody and harmony (see page 396), rhythm (see page 405),
and musical genre (see page 411). The organization follows increasing levels of abstraction. In
section 10.3, we address content exploitation and present different applications to content-based
audio description. Finally, promising avenues for future work in the field are summarized in
section 10.4.

1Hence the undifferentiated use in this chapter of the terms “music content processing” and “audio content
processing.”
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10.1.1 Music content: A functional view

A look at a dictionary reveals, at least, three senses for the word “content”:

everything that is included in a collection;

what a communication that is about something is about;

the sum or range of what has been perceived, discovered, or learned.

The disciplines of information science and linguistics offer interesting perspectives on the
meaning of this term. However, we will rather focus on a more pragmatic view. The Society of
Motion Picture and Television Engineers (SMPTE) and the European Broadcasting Union (EBU)
have defined content as the combination of two entities termed metadata and essence. Essence
is the raw program material itself, the data that directly encodes pictures, sounds, text, video,
etc. Essence can also be referred to as media (although the former does not entail the physical
carrier). In other words, essence is the encoded information that directly represents the actual
message, and it is normally presented in a sequential, time-dependent manner. On the other
hand, metadata (literally, “data about the data”) is used to describe the essence and its different
manifestations. Metadata can be classified, according to SMPTE/EBU, into several categories:

Essential (meta-information that is necessary to reproduce the essence, like the number of
audio channels, the Unique Material Identifier, the video format, etc.)

Access (to provide control and access to the essence, i.e. Copyright information)

Parametric (to define parameters of the essence capture methods like camera set-up, micro-
phones set-up, perspective, etc.)

Relational (to achieve synchronization between different content components, e.g. time-
code)

Descriptive (giving a description of the actual content or subject matter in order to facilitate
the cataloging, search, retrieval and administration of content; i.e. title, cast, keywords,
classifications of the images, sounds and texts, etc.),

In a quite similar way the National Information Standards Organization considers three
main types of metadata:
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Descriptive metadata, which describe a resource for purposes such as discovery and iden-
tification; they can include elements such as title, abstract, author, and keywords.

Structural metadata, which indicate how compound objects are put together, for example,
how visual or audio takes are ordered to form a seamless audiovisual excerpt.

Administrative metadata, which provide information to help manage a resource, such as
“when” and “how” it was created, file type and other technical information, and who can
access it. There are several subsets of administrative data; two that sometimes are listed as
separate metadata types are:

– Rights management metadata, which deals with intellectual property rights, and

– Preservation metadata, which contains information needed to archive and preserve a
resource.

In accordance with these rather general definitions of the term “metadata,” we propose to
consider as content all that can be predicated from a media essence.

Any piece of information related to a musical piece that can be annotated, extracted,
and that is in any way meaningful (that carries semantic information) to some user, can be
technically denoted as metadata. Along this rationale, the MPEG-7 standard defines a content
descriptor as “a distinctive characteristic of the data which signifies something to somebody”
Manjunath et al. [2002]. This rather permissive view on the nature of music contents has a
drawback: as they represent many different aspects of a musical piece, metadata are not ensured
to be understandable by any user. This is part of the “user-modeling problem,” whose lack of
precision participates to the so-called semantic gap, that is, “the lack of coincidence between the
information that one can extract from the (sensory) data and the interpretation that the same data
has for a user in a given situation” Smeulders et al. [2000]. That has been signaled by several
authors Smeulders et al. [2000], Lew et al. [2002], Jermyn et al. [2003] as one of the recurrent open
issues in systems dealing with audiovisual content.

It is therefore important to consider metadata together with their functional values and
address the question of which content means what to which users, and in which application
Gouyon and Meudic [2003]. A way to address this issue is to consider content hierarchies with
different levels of abstraction, any of them potentially useful for some users. In that sense, think of
how different would a content description of a musical piece be if the targeted user was a naive
listener or an expert musicologist. Even a low-level descriptor such as the spectral envelope
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of a signal can be thought of as a particular level of content description targeted for the signal
processing engineer. All these specifically targeted descriptions can be thought of as different
instantiations of the same, general, content description scheme.

Following Amatriain and Herrera [2001] and Lesaffre et al. [2003], let us here propose the
following distinction between descriptors of low, mid and high levels of abstraction (the latter
being also sometimes referred to as “semantic” descriptors):

A low-level descriptor can be computed from the essence data in a direct or derived way (i.e.
after signal transformations like Fourier or Wavelet transforms, after statistical processing
like averaging, after value quantization like assignment of a discrete note name for a given
series of pitch values, etc.). Most of low-level descriptors make little sense to the majority
of users but, on the other hand, their exploitation by computing systems are usually easy.
They can be also referred to as “signal-centered descriptors” (see on page 387).

Mid-level descriptors require an induction operation that goes from available data towards
an inferred generalization about them. This kind of descriptors usually pave the way
for labeling contents, as for example a neural network model that makes decisions about
musical genre or about tonality, or a Hidden Markov Model that makes possible to segment
a song according to timbre similarities. Machine learning and statistical modeling make
mid-level descriptors possible, but in order to take advantage of those techniques and
grant the validity of the models, we need to gather large sets of observations. Mid-level
descriptors are also sometimes referred to as “object-centered descriptors.”

The jump from low- or mid-level descriptors to high-level descriptors requires “bridging
the semantic gap.” Semantic descriptors require an induction that has to be carried by
means of a user-model (in order to yield the “interpretation” of the description), and not
only a data-model as it was in the case of mid-level descriptors. As an example, let us
imagine a simplistic “mood” descriptor consisting on labels “happy” and “sad.” In order
to compute such labels, one may2 compute the tonality of the songs (i.e. “major” and
“minor”) and the tempo by means of knowledge-based analyzes of spectral and amplitude
data. Using these mid-level descriptors, a model for computing the labels “happy” and
“sad” would be elaborated by getting users’ ratings of songs in terms of “happy” and “sad”
and studying the relationships between these user-generated labels and values for tonality
and tempo. High-level descriptors can also be referred to as “user-centered descriptors.”

2and it is only a speculation here
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Standards In order to be properly exploited, music content (either low-, mid- or high-level
content) has to be organized into knowledge structures such as taxonomies, description schemes,
or ontologies. The Dublin Core and MPEG-7 are currently the most relevant standards for rep-
resenting music content. The Dublin Core (DC) was specified by the Dublin Core Metadata
Initiative, an institution that gathers organizations such as the Library of Congress, the National
Science Foundation, or the Deutsche Bibliotek, to promote the widespread adoption of interoper-
able metadata standards. DC specifies a set of sixteen metadata elements, a core set of descriptive
semantic definitions, which is deemed appropriate for the description of content in several in-
dustries, disciplines, and organizations. The elements are Title, Creator, Subject, Description,
Publisher, Contributor, Date, Type, Format, Identifier, Source, Language, Relation, Coverage,
Rights, and Audience. Description, for example, can be an abstract, a table of contents, a graph-
ical representation or free text. DC also specifies a list of qualifiers that refine the meaning and
use of the metadata elements, which open the door to refined descriptions and controlled-term
descriptions. DC descriptions can be represented using different syntaxes, such as HTML or
RDF/XML.

On the other hand, MPEG-7 is a standardization initiative of the ISO/IEC Moving Picture
Expert Group that, contrasting with other MPEG standards, does not address the encoding of
audiovisual essence. MPEG-7 aims at specifying an interface for the description of multimedia
contents. MPEG-7 defines a series of elements that can be used to describe content, but it
does not specify the algorithms required to compute values for those descriptions (in some
cases, the algorithms are still to be found!). The building blocks of MPEG-7 description are
descriptors, description schemes (complex structures made of aggregations of descriptors and
description schemes), and the Description Definition Language (DDL), which defines the syntax
that an MPEG-7 compliant description has to follow. The DDL makes hence possible the creation
of non-standard, but compatible, additional descriptors and description schemes. This is an
important feature because different needs will call for different kinds of structures, and for
different instantiations of them. Depending on the theoretical and/or practical requirements of
our problem, the required descriptors and description schemes will vary but, thanks to the DDL,
we may build the proper structures to tailor our specific approach and required functionality.
MPEG-7 descriptions are written in XML but a binary format has been defined to support
their compression and streaming. The MPEG-7 standard definition covers eight different parts:
Systems, DDL, Visual, Audio, Multimedia Description Schemes, Reference, Conformance and
Extraction. In the audio section, we find music-specific descriptors for melody, rhythm or timbre,
and in the Multimedia Description Schemes we find structures suitable to define classification
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schemes and a wealth of semantic information. As argued in Gomez et al. [2003a,b] by some
authors of this chapter, the status of the original standard (see Manjunath et al. [2002] for an
overview), as to representing music contents, is nevertheless a bit deceiving and will require
going beyond the yet-to-be-approved version 3 (which will probably include score descriptions)
in order to be seriously adopted by the digital music community.

10.1.2 Processing music content: Description and exploitation

“Processing,” beyond its straight meaning of “putting through a prescribed procedure,” usually
denotes a functional or computational approach to a wide range of scientific problems. “Signal
processing” is the main term of reference here, but we could also mention “speech processing,”
“language processing,” “visual processing” or “knowledge processing.” A processing discipline
focuses on the algorithmic level as defined by Marr [1982]. The algorithmic level describes a
system in terms of the steps that have to be carried out to solve a given problem. This type of
description is, in principle, independent of the implementation level (as the algorithm can be
effectively implemented in different ways). However, it is important to contrast the meaning of
content processing with that of signal processing. The object of signal processing are the raw data
captured by sensors, whereas content processing deals with an object that is within the signal,
embedded in it like a second-order code, and to which we refer to using the word metadata.
The processes of extraction and modeling these metadata require the synergy of, at least, four
disciplines (signal processing, artificial intelligence, information retrieval, and cognitive science)
in order to make use, among other elements, of:

Powerful signal analysis techniques that make possible to address complex real-world
problems, and to exploit context- and content-specific constraints in order to maximize
their efficacy.

Reliable automatic learning techniques, that aid to build models about classes of objects
that share specific properties, about processes that show e.g. temporal trends.

Availability of large databases of describable objects, and the technologies required to
manage (index, query, retrieve, visualize) them.

Usable models of the human information processing that is involved in the processes
of extracting and exploiting metadata (i.e. how humans perceive, associate, categorize,
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remember, recall, and integrate into their behavior plans the information that might be
available to them by means of other content processing systems).

Looking for the origins of music content processing, we can spot different forerunners
depending on the contributing discipline that we consider.

When focusing on the discipline of Information Retrieval, the acknowledged pioneers seem
to be Kassler [1966], Lincoln [1967]. The former defines music information retrieval as “the task
of extracting, from a large quantity of musical data, the portions of that data with respect to which
some particular musicological statement is true” (p. 66) and presents a computer language for
addressing those issues. The latter discusses three criteria that should be met for automatic
indexing of musical materials: eliminating the transcription by hand, effective input language
for music, and an economic means for printing the music. This thread was later followed by
Byrd [1984], Downie [1994], McNab et al. [1996], Blackburn [2000] with works dealing with score
processing, representation and matching of melodies as strings of symbols, or query by humming.

Another batch of forerunners can be found when focusing on digital databases concepts and
problems. Even though the oldest one dates back to 1988 Eaglestone [1988], the trend towards
databases for “content processing” emerges more clearly in the early nineties de Koning and Oates
[1991], Eaglestone and Verschoor [1991], Feiten et al. [1991], Keislar et al. [1995]. These authors
address the problems related to extracting and managing the acoustic information derived from
a large amount of sound files. In this group of papers, we find questions about computing
descriptors at different levels of abstraction, ways to query a content-based database using voice,
text, and even external devices, and exploiting knowledge domain to enhance the functionalities
of the retrieval system.

To conclude with the antecedents for music content processing, we must also mention the
efforts made since the last 30 years in the field of music transcription, whose goal is the auto-
matic recovering of symbolic scores from acoustic signals. See Klapuri [2004a] for an exhaustive
overview of music transcription research and Scheirer [2000] for a critical perspective on music
transcription. Central to music transcription is the segregation of the different musical streams
that coexist in a complex music rendition. Blind Source Separation (BSS) and Computational Au-
ditory Scene Analysis (CASA) are two paradigms that address musical stream segregation. An
important conceptual difference between them is that, unlike the latter, the former intends to ac-
tually separate apart the different streams that summed together make up the multi-instrumental
music signal. BSS is the agnostic approach to segregate musical streams, as it usually does not
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assume any knowledge about the signals that have been mixed together. The strength of BSS
models (but at the same time its main problem in music applications) is that only mutual statis-
tical independence between the source signals is assumed, and no a priori information about the
characteristics of the source signals Casey and Westner [2000], Smaragdis [2001]. CASA, on the
other hand, is partially guided by the groundbreaking work of Bregman —and originally coined
Auditory Scene Analysis (ASA)— on the perceptual mechanisms that enables a human listener
to fuse or fission concurrent auditory events Bregman [1990], see also XXXREF TO CHEVEIGNE
CHAPTERXXX. CASA addresses the computational counterparts of ASA. Computer systems
embedding ASA theories assume, and implement, specific heuristics that are hypothesized to
play a role in the way humans perceive the music, as e.g. Gestalt principles. Worth to mention
here are the works by Mellinger [1991], Brown [1992], Ellis [1996], Kashino and Murase [1997].

A comprehensive characterization of the field of music content processing was offered
recently by Leman in Leman [2003]: “the science of musical content processing aims at explaining
and modeling the mechanisms that transform information streams into meaningful musical units
(both cognitive and emotional).” Musical content processing, for Leman, is the object of study
of his particular view of Musicology, much akin to the so-called systematic musicology than
to historic musicology. He additionally provides a definition of music content processing by
extending it along three dimensions:

The intuitive-speculative dimension, which includes semiotics of music, musicology, so-
ciology, and philosophy of music. These disciplines provide a series of concepts and
questions from a culture-centric point of view; music content is, following this dimension,
a culture-dependent phenomenon.

The empirical-experimental dimension, which includes research in physiology, psychoa-
coustics, music psychology, and neuro-musicology. These disciplines provide most of the
empirical data needed to test, develop or ground some elements from the intuitive dimen-
sion; music content is, following this dimension, a percept in our auditory system.

The computation-modeling dimension, which includes sound analysis and also compu-
tational modeling and simulation of perception, cognition and action. Music content is,
following this dimension, a series of processes implemented in a computer, intended to
emulate a human percept.

However, these three dimensions address mainly the descriptive part of music content pro-
cessing, and according to Aigrain, “content processing is meant as a general term covering feature
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extraction and modeling techniques for enabling basic retrieval, interaction and creation func-
tionality” Aigrain [1999]. He also argue that music content processing technologies will provide
“new aspects of listening, interacting with music, finding and comparing music, performing it,
editing it, exchanging music with others or selling it, teaching it, analyzing it and criticizing it.”
We see here that music content processing can be characterized by two different tasks: describing

and exploiting content. Furthermore, as mentioned above, the very meaning of “music content”
cannot be entirely grasped without considering its functional aspects and including specific ap-
plications, targeted to specific users. Hence, in addition to describing music content (as reviewed
in section 10.2), music content processing is also concerned with the design of computer systems
that open the way to a more pragmatic content exploitation according to constraints posed by
Leman’s intuitive, empirical and computational dimensions (this is the object of section 10.3).

10.2 Audio content description

10.2.1 Low-level audio features

Many different low-level features can be computed from audio signals. literature in signal
processing and speech processing provide us with an dramatic amount of techniques for signal
representation and signal modeling over which features can be computed. Parametric methods
(as e.g. AR modeling, Prony modeling) provide directly such features, while additional post-
processing is necessary to derive features from non-parametric methods (as e.g. peaks can be
extracted from a spectral or cepstral representations). A comprehensive overview of signal
representation and modeling techniques and their associated features is clearly out of the scope
of this chapter, we will only mention the features most commonly used in musical audio signal
description, with a special focus on the recent work published in the music transcription and
MIR literature.

Commonly, the audio signal is first digitized (if necessary) and converted to a general
format, e.g. mono PCM (16 bits) with a fixed sampling rate (ranging from 5 to 44.1 KHz). A key
assumption is that the signal can be regarded as stationary over intervals of a few milliseconds.
Therefore, the signal is divided into frames (short chunks of signal) of e.g. 10 ms. The number of
frames computed per second is called frame rate. A tapered window function (e.g. a Gaussian or
Hanning window) is applied to each frame to minimize the discontinuities at the beginning and
end. Consecutive frames are usually considered with some overlap for smoother analyzes. The
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analysis step, the hop size, equals the frame rate minus the overlap.

Temporal features Many audio features can be computed directly from the temporal represen-
tation of these frames, for instance, the mean (but also the maximum and the range of) amplitude of
the samples in a frame, the energy, the zero-crossing rate, the temporal centroid Gomez et al. [2005]
and auto-correlation coefficients Peeters [2004].

Some low-level features have also shown to correlate with perceptual attributes, for in-
stance, amplitude is loosely correlated with the loudness, see XXXREF TO CHEVEIGNE CHAP-
TERXXX. Equal-loudness curves (called isophones) show that there is a logarithmic relation
between the physical measure of amplitude and loudness, with an additional frequency depen-
dent trend. Although this curves have proved only valid for the stable part of pure sinusoids
(more than 500 ms long), they have been used as a quite robust approximation for measuring
loudness of complex mixtures Pfeiffer [1999].

Spectral features It is also very common to compute features on a different representation of the
audio, as for instance the spectral representation. Hence, a spectrum is obtained from each signal
frame by applying a Discrete Fourier Transform (DFT), usually with the help of the Fast Fourier
Transform (FFT), this procedure is called Short-Time Fourier Transform (STFT). Sometimes, the
time-frequency representation is further processed by taking into account perceptual processing
that take place in human auditory system as for instance the filtering performed by the middle-
ear, loudness perception, temporal integration or frequency masking Moore [1995], see also
XXXREF TO CHEVEIGNE CHAPTERXXX. Many features can be computed on the obtained
representation, as e.g. the spectrum energy, energy values in several frequency sub-bands (as
e.g. the perceptually-motivated Bark bands Moore [1995]), the mean, geometric mean, spread,
centroid, flatness, kurtosis, skewness, spectral slope, high-frequency content and roll-off of the spectrum
frequency distribution or the kurtosis and skewness of the spectrum magnitude distribution, see
Peeters [2004] and Gomez et al. [2005] for more details on these numerous features.

Further modeling of the spectral representation can be achieved through sinusoidal model-
ing McAulay and Quatieri [1986] or sinusoidal plus residual modeling Serra [1989], Amatriain et al.
[2002]. Other features can be computed on the series of spectral peaks corresponding to each frame
and on the spectrum of the residual component. Let us mention, for instance, the mean (and the ac-
cumulated) amplitude of sinusoidal and residual components, the noisiness, the harmonic distortion,
the harmonic spectral centroid, the harmonic spectral tilt and different ratios of peak amplitudes as
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the first, second and third tristimulus or the odd-to-even ratio Serra and Bonada [1998], Gomez et al.
[2005].

Bear in mind that other transforms can be applied instead of the DFT as e.g. the Wavelet
Kronland-Martinet et al. [1987] or the Wigner-Ville transforms Cohen [1989].

Cepstral features Mel-Frequency Cepstrum Coefficients (MFCCs) are widespread descriptors in
speech research. The cepstral representation has been shown to be of prime importance in this
field, partly because of its ability to nicely separate the representation of voice excitation (the
higher coefficients) from the subsequent filtering performed by the vocal tract (the lower coeffi-
cients). Roughly, lower coefficients represent spectral envelope (i.e. the formants) while higher
ones represent finer details of the spectrum, among which the pitch Oppenheim and Schafer
[2004]. One way of computing the Mel-Frequency Cepstrum from a magnitude spectrum is as
follows:

1. Projection of the frequency axis from linear scale to the Mel scale, of lower dimensionality
(i.e. 20, by summing magnitudes in each of the 20 frequency bands of a Mel critical-band
filter-bank)

2. Magnitude logarithm computation

3. Discrete Cosine Transform (DCT)

The number of output coefficients of the DCT is variable. It is often set to 13, as in the standard
implementation of the MFCCs detailed in the widely-used speech processing software Hidden
Markov Model Toolkit (HTK).3

Temporal evolution of frame features Apart from the instantaneous, or frame, feature values,
many authors focus on the temporal evolution of features. This can be computed for instance
as the derivative of feature values, which can be estimated by a first-order differentiator. The
degree of change can also be measured as the feature differential normalized with its magnitude,
e.g. Klapuri et al. [2005]. This is supposed to provide a better emulation of human audition,
indeed, according to Weber’s law, for humans, the just-noticeable-difference in the increment of
a physical attribute depends linearly on its magnitude before incrementing. That is, ∆x/x (where
x is a specific feature and ∆x is the smallest perceptual increment) would be constant.

3http://htk.eng.cam.ac.uk/

http://htk.eng.cam.ac.uk/
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10.2.2 Segmentation and region features

Frame features represent a significant reduction of dimensionality with respect to the audio
signal itself, however, it is possible to further reduce the dimensionality by focusing on features
computed on groups of consecutive frames, often called regions. The main issue here is the
determination of relevant region boundaries, or the segmentation process. Once a given sound
has been segmented into regions, it is possible to compute features as statistics of all frame features
over the whole region (for example, the mean and variance of the amplitude of sinusoidal and
residual components Serra and Bonada [1998]).

Segmentation Segmentation comes in different flavors, for McAdams and Bigand [1993], it
“refers to the process of dividing an event sequence into distinct groups of sounds. The factors
that play a role in segmentation are similar to the grouping principles addressed by Gestalt
psychology.” This definition implies that the segmentation process represents a step forward
in the level of abstraction of data description. However, it may not necessarily be the case.
Indeed, consider an adaptation of a classic definition coming from the visual segmentation area
Pal and Pal [1993]: “(sound) segmentation is a process of partitioning the sound file/stream into
non-intersecting regions such that each region is homogeneous and the union of no two adjacent
regions is homogeneous.” The notion of homogeneity in this definition implies a property
of signal, or feature stationarity that may equate to a perceptual grouping process, but not
necessarily.

In what is sometimes referred to as model-free segmentation, the main idea is using the
amount of change of a feature vector, as a boundary detector: when this amount is higher
than a given threshold, a boundary change decision is taken. Threshold adjustment requires
a certain amount of trial-and-error, or fine-tuned adjustments regarding different segmentation
classes. Usually, a smoothing window is considered in order to weight contributions from closer
observations [Vidal and Marzal, 1990, p. 45].

It is also possible to generalize the previous segmentation process to multidimensional
feature vectors. There, the distance between consecutive frames can be computed with the help
of different measures as e.g. the Mahalanobis distance Tzanetakis and Cook [1999]. In the same
vein, Foote [2000] uses MFCCs and the cosine distance measure between pairs of frames (not
only consecutive frames), which yields a dissimilarity matrix that is further correlated with a
specific kernel. Different kernels can be used for different types of segmentations (from short- to
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long-scale).

The level of abstraction that can be attributed to the resulting regions may depend on the
features used in the first place. For instance, if a set of low-level features is known to correlate
strongly with a human percept (as the fundamental frequency correlates with the pitch and the
energy in Bark bands correlates with the loudness) then the obtained regions may have some
relevance as features of mid-level of abstraction (e.g. musical notes in this case).

Model-based segmentation on the other hand is more directly linked to the detection of
mid-level feature boundaries. It corresponds to a focus on mid-level features that are thought,
a priori, to make up the signal. A classical example can be found in speech processing where
dynamical models of phonemes, or words, are built from observations of labeled data. The most
popular models are Hidden Markov Models (HMM) Rabiner [1989]. Applications of HMMs
to segmentation of music comprise e.g. segmentation of fundamental frequency envelopes in
musical notes Raphael [1999] and segmentation of MFCC-based temporal series in regions of
globally-homogeneous timbres Batlle and Cano [2000]. Other examples of model-based segmen-
tation can be found in Rossignol [2000] who reports on the performance of different induction
algorithms, Gaussian Mixture Models (GMM), k-Nearest Neigbours (k-NN) and Artificial Neural
Networks (ANN), in the tasks of speech/music segmentation and intra-note segmentation. In
the more general context of signal segmentation (not just music signals), Basseville et al. [1993]
propose many segmentation techniques, some of which entailing the use of signal models as
for instance, a time-domain based technique in which two windows are used, one with fixed
size and a growing one, and some distance estimation is computed between two AR models
(derived from the cross entropy between the conditional distributions of the two models), one
built on each window. Here also, a threshold is used to determine whether the distance should be
considered representative of a boundary or not. Application of this technique to musical signals
can be found in Jehan [1997], Thornburg and Gouyon [2000].

We refer to Herrera and Gomez [2001] for a complete review of musical signal segmentation
techniques.

Note onset detection The detection of note onsets in musical signals has attracted many com-
puter music researchers since the early eighties Gordon [1984]. Several methods have been
designed, making use of diverse low-level features. The simplest focus on the temporal variation
of a single feature, as for instance the energy or the pitch. However, the combined used of mul-
tiple features (as energy and pitch) seems to provide better estimates, state-of-the-art algorithms
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often making use of band-wise energy processing Klapuri [1999], Bello [2003]. Model-based note
onset segmentation has also been an active research field in the last years Thornburg and Gouyon
[2000]

The literature in onset detection is extremely furnished and a review is out of the scope of
this chapter, for an exhaustive review, see Bello [2003].

Intra-note segmentation In addition to note onset detection, some research has also been dedi-
cated to the segmentation of musical signals in terms of Attack, Sustain and Release regions. This
is especially relevant, from a feasibility point of view, when dealing with isolated instrument sam-
ples or musical phrases played by a monophonic instrument Jenssen [1999], Maestre and Gomez
[2005].

Given start and end boundaries of these regions, it is possible to compute a number
of features that relate to their durations as e.g. the log-attack time Peeters [2004]. Some au-
thors also focus on the variations of low-level frame features in these regions, such as the energy
Maestre and Gomez [2005] or the fundamental frequency in sustain regions, characterizing there-
fore the vibrato Herrera and Bonada [1998].

Speech/Music segmentation A large body of work in automatic segmentation of audio signal
also concerns the determination of boundaries of speech regions and musical regions. This is usu-
ally achieved by model-based segmentation of multiple low-level features Scheirer and Slaney
[1997], Harb and Chen [2003], Pinquier et al. [2003].

10.2.3 Audio fingerprints

Audio fingerprints have attracted a lot of attention for their usefulness in audio identification
applications. Compact content-based signatures summarizing audio recordings (the audio fin-
gerprints) can be extracted from a musical audio piece and stored in a database. Fingerprint of
unlabeled pieces of audio can be calculated and matched against those stored in the database,
providing a link to corresponding metadata (e.g. artist and song name). Section 10.3.1 provides
more details on the main requirements of fingerprinting systems and application scenarios.

For a general functional framework of audio fingerprinting systems and an overview of
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current technologies, see Cano et al. [2002a].4 This section provides a short overview of audio
features commonly used in the design of audio fingerprints.

Fingerprint extraction The fingerprint extraction derives a set of features from a recording in a
concise and robust form. Fingerprint requirements include:

Discrimination power over huge numbers of other fingerprints,

Invariance to distortions,

Compactness,

Computational simplicity.

The simplest approach one may think of —using directly the digitized waveform— is
neither efficient nor effective. A more efficient implementation of this approach could use a
hash method, such as MD5 (Message Digest 5) or CRC (Cyclic Redundancy Checking), to obtain
a compact representation of the binary file. However, hash values are fragile, a single bit flip
is sufficient for the hash to completely change. They are also not robust to compression or
distortions.

Most fingerprint extraction systems consist of a front-end and a fingerprint modeling block
(see Figure 10.1). The front-end computes low-level features from the signal and the fingerprint
model defines the final fingerprint representation, we now briefly describe them in turn.

Front-End Several driving forces co-exist in the design of the front-end: dimensionality
reduction, perceptually meaningful parameters (similar to those used by the human auditory
system), invariance/robustness (to channel distortions, background noise, etc.) and temporal
correlation (systems that capture spectral dynamics).

After the first step of audio digitization, the audio is sometimes preprocessed to simulate
the channel, e.g: band-pass filtered in a telephone identification task. Other types of processing
are a GSM coder/decoder in a mobile phone identification system, pre-emphasis, amplitude
normalization (bounding the dynamic range to [−1, 1]).

4Note that fingerprinting should not be mistaken for watermarking, differences are explained in Gomes et al.
[2003].
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Figure 10.1: Fingerprint Extraction Framework: Front-end (top) and Fingerprint modeling (bot-
tom).

After framing the signal is small windows, overlap must be applied to assure robustness
to shifting (i.e. when the input data is not perfectly aligned to the recording that was used
for generating the fingerprint). There is a trade-off between the robustness to shifting and the
computational complexity of the system: the higher the frame rate, the more robust to shifting
the system is but at a cost of a higher computational load.

Then, linear transforms are usually applied (see Figure 10.1). If the transform is suitably
chosen, the redundancy is significantly reduced. There are optimal transforms in the sense of
information packing and de-correlation properties, like Karhunen-Loeve (KL) or Singular Value
Decomposition (SVD). These transforms, however, are computationally complex. For that reason,
lower complexity transforms using fixed basis vectors are common (as e.g. the DFT).

Additional transformations are then applied in order to generate the final acoustic vec-
tors. In this step, we find a great diversity of algorithms. The objective is again to reduce the
dimensionality and, at the same time, to increase the invariance to distortions. It is very com-
mon to include knowledge of the transduction stages of the human auditory system to extract
more perceptually meaningful parameters. Therefore, many systems extract several features
performing a critical-band analysis of the spectrum. Resulting features are e.g. MFCCs, energies
in Bark-scaled bands, geometric mean of the modulation frequency estimation of the energy in



10.2. Audio content description 395

Mel/Bark/Log
Scale Bands

Spectrum

Sign of Freq. and
 Time Derivative

Energy or 
Loudness

Peak-based
band selection

Spectral flatness
measure

Log DCT

Envelope
Detector

Mod. Freq
Transform

MFCC

SFM

Band Repr.
Vectors

Filterbank
Energies

Hash
String

Mod.
Freq.

Figure 10.2: Feature Extraction Examples

bark-spaced band-filters, etc., or many of the features presented in section 10.2.1. Some examples
are given in Figure 10.2.

Most of the features described so far are absolute measurements. In order to better
characterize temporal variations in the signal, higher order time derivatives are added to the
signal model. Some systems compact the feature vector representation using transforms as
Principal Component Analysis (PCA). It is also quite common to apply a very low resolution
quantization (ternary or binary) to the features, the purpose of which is to gain robustness against
distortions and reduce the memory requirements.

Fingerprint Models The sequence of features calculated on a frame by frame basis is then
further reduced to a fingerprint model that usually implies statistics of frame values (mean and
variance) and redundancies in frame vicinity. A compact representation can also be generated
by clustering the feature vectors. The sequence of vectors is thus approximated by a much lower
number of representative code vectors, a codebook. The temporal evolution of audio is lost with
this approximation, but can be kept by collecting short-time statistics over regions of time or by
HMM modeling Batlle et al. [2002].

At that point, some systems also derive musically-meaningful attributes from low-level fea-
tures, as the beats Kirovski and Attias [2002] (see on page 405) or the predominant pitch Blum et al.
[1999] (see on page 400).
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10.2.4 Tonal descriptors: from pitch to key

This section first reviews computational models of pitch description and then progressively
addresses tonal aspects of higher levels of abstraction that imply different combinations of pitches:
melody (sequence of single pitches combined over time), pitch classes and chords (simultaneous
combinations of pitches), and chord progressions, harmony and key (temporal combinations of
chords).

Pitch

Fundamental frequency is the main low-level descriptor to consider when describing melody and
harmony. Due to the significance of pitch detection for speech and music analysis, a lot of research
has been made on this field. We present here a brief review of the different approaches for pitch
detection: fundamental frequency estimation for monophonic sounds, multi-pitch estimation
and predominant pitch estimation. We refer to Gomez et al. [2003c] for an exhaustive review.

Fundamental frequency estimation for monophonic sounds As illustrated on Figure 10.3,
the fundamental frequency detection process can be subdivided into three successive steps:
the preprocessor, the basic extractor, and the post-processor Hess [1983]. The basic extractor
converts the input signal into a series of fundamental frequency estimates, one per analysis frame.
Pitched/unpitched measures are often additionally computed to decide whether estimates are
valid or should be discarded Cano [1998]. The main task of the pre-processor is to facilitate the
fundamental frequency extraction. Finally, the post-processor performs more diverse tasks, such
as error detection and correction, or smoothing of an obtained contour. We now describe these
three processing blocks in turn.

Concerning the main extractor processing block, the first solution was to adapt the tech-
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niques proposed for speech Hess [1983]. Later, other methods have been specifically designed
for dealing with music signals. These methods can be classified according to their processing
domain: time-domain algorithms vs frequency-domain algorithms. This distinction is not always
so clear, as some of the algorithms can be expressed in both (time and frequency) domains, as the
autocorrelation function (ACF) method. Another way of classifying the different methods, more
adapted to the frequency domain, is to distinguish between spectral place algorithms and spectral

interval algorithms Klapuri [2000]. The spectral place algorithms weight spectral components
according to their spectral location. Other systems use the information corresponding to spectral
intervals between components. Then, the spectrum can be arbitrarily shifted without affecting
the output value. These algorithms work relatively well for sounds that exhibit inharmonicity,
because intervals between harmonics remain more stable than the places for the partials.

Time-domain algorithms The simplest time-domain technique is based on counting the
number of times the signal crosses the 0-level reference, the zero-crossing rate (ZCR). This method
is not very accurate when dealing with noisy signals or harmonic signals where the partials are
stronger than the fundamental.

Algorithms based on the time-domain autocorrelation function (ACF) have been among
the most frequently used fundamental frequency estimators. ACF-based fundamental frequency
detectors have been reported to be relatively noise immune but sensitive to formants and spectral
peculiarities of the analyzed sound Klapuri [2000].

Envelope periodicity algorithms find their roots in the observation that signals with more
than one frequency component exhibit periodic fluctuations in their time domain amplitude en-
velope. The rate of these fluctuations depends on the frequency difference of each two frequency
components. In the case of a harmonic sound, the fundamental frequency is clearly visible in the
amplitude envelope of the signal. The most recent models of human pitch perception calculate
envelope periodicity separately at distinct frequency bands and then combine the results across
channels ?Terhardt et al. [1981]. These methods attempt to estimate the perceived pitch, not
pure physical periodicity, in acoustic signals of various kinds. (See XXXREF TO CHEVEIGNE
CHAPTERXXX for more references on the perception of pitch.)

The parallel processing approach of Gold and Rabiner [1969], Rabiner and Schafer [1978],
designed to deal with speech signals, has been successfully used in a wide variety of applications.
Instead of designing one very complex algorithm, the basic idea is to tackle the same problem
with several, more simple processes in parallel and later combine their outputs. As Bregman
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points out in Bregman [1998], human perception appears to be redundant at many levels, several
different processing principles seem to serve the same purpose, and when one of them fails,
another is likely to succeed.

Frequency-domain algorithms Noll Noll [1967] introduced this idea of Cepstrum analysis

for pitch determination of speech signals. The Cepstrum computation (see on page 389) nicely
separates the transfer function (spectral envelope) from the source, hence the pitch. Cepstrum
fundamental frequency detection is closely similarity to autocorrelation systems Klapuri [2000].

Spectrum autocorrelation methods were inspired by the observation that a periodic but non-
sinusoidal signal has a periodic magnitude spectrum, the period of which is the fundamental
frequency. This period can be estimated by ACF Klapuri [2000].

Harmonic matching methods extract a period from a set of spectral peaks of the magnitude
spectrum of the signal. Once these peaks in the spectrum are identified, they are compared to
the predicted harmonics for each of the possible candidate note frequencies, and a measure to
fit can be developed. A particular fitness measure is described in Maher and Beauchamp [1993]
as a “Two Way Mismatch” procedure. This method is used in the context of Spectral Modeling
Synthesis (SMS), with some improvements, as pitch-dependent analysis window, enhanced peak
selection, and optimization of the search Cano [1998].

The idea behind Wavelet based algorithms is to filter the signal using a wavelet with derivative
properties. The output of this filter will have maxima where glottal-closure instants or zero
crossings happen in the input signal. After detection of these maxima, the fundamental frequency
can be estimated as the distance between consecutive maxima.

Klapuri Klapuri [2000] proposes a band-wise processing algorithm that calculates independent
fundamental frequencies estimates in separate frequency bands. Then, these values are combined
to yield a global estimate. This method presents several advantages: it solves the “inharmonicity”
problem, it is robust to heavy signal distortions, where only a fragment of the frequency range is
reliable.

Preprocessing methods The main task of a preprocessor is to suppress noise prior to
fundamental frequency estimation. Some preprocessing methods used in speech processing are
detailed in Hess [1983]. Methods specifically defined for musical signals are detailed in Klapuri
[2004b]
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Post-processing methods The estimated series of pitches may be noisy and may present
isolated errors, different methods have been proposed for correcting these. The first is low-pass
filtering (linear smoothing) of the series. This may remove much of the local jitter and noise,
but does not remove local gross measurements errors, and, in addition, it smears the intended
discontinuities at the voiced-unvoiced transitions Hess [1983]. Non-linear smoothing has been
proposed to address these problems Rabiner et al. [1975]. Another procedure consists in storing
several possible values for the fundamental frequency for each analysis frame Laroche [1995],
assigning them a score (e.g. the value of the normalized autocorrelation). Several tracks are
then considered and ranked (according to some continuity evaluation function) by e.g. dynamic
programming. This approach minimizes the abrupt fundamental frequency changes (e.g. octave
errors) and gives good results in general. Its main disadvantage is its estimation delay and non-
causal behavior. It is also usually useful to complement the forward estimation by a backward
estimation Cano [1998].

Multi-pitch estimation Multi-pitch estimation is the simultaneous estimation of the pitches
making up a polyphonic sound (e.g. a polyphonic instrument or several instruments playing
together).

Some algorithms used for monophonic pitch detection can be adapted to the simplest
polyphonic situations Maher and Beauchamp [1993]. However, they are usually not directly
applicable to general cases, they require, among other differences, significantly longer time
frames (around 100 ms) Klapuri [2000].

Relatively successful algorithms implement principles of the perceptual mechanisms that
enables a human listener to fuse or fission concurrent auditory streams (see references to “Audi-
tory Scene Analysis” on page 386 and XXXREF TO CHEVEIGNE CHAPTERXXX). For instance,
Kashino et al. implement such principles in a Bayesian probability network, where bottom-up
signal analysis can be integrated with temporal and musical predictions Kashino et al. [1995]. A
recent example following the same principles is detailed in Walmsley et al. [1999], where a com-
parable network estimates the parameters of a harmonic model jointly for a number of frames.
Godsmark and Brown have developed a model that is able to resolve melodic lines from poly-
phonic music through the integration of diverse knowledge Godsmark and Brown [1999]. Other
methods are listed in Klapuri [2000].

The state-of-the-art multi-pitch estimators operate reasonably well for clean signals, frame-
level error rates increasing progressively with the number of concurrent voices. However, the
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number of concurrent voices is often underestimated and the performance usually decreases
significantly in the presence of noise Klapuri [2000].

Predominant pitch estimation Predominant pitch estimation also aims at estimating pitches
in polyphonic mixtures, however, contrarily to multi-pitch estimation, it assumes that a specific
instrument is predominant and defines the melody. For instance, the system proposed in Goto
[2000] detects melody and bass lines in polyphonic recordings using a multi-agent architecture
by assuming that they occupy different frequency regions.

Other relevant methods are reviewed in Gomez et al. [2003c] and Klapuri [2004b].

Melody

Extracting melody from note sequences We have presented above several algorithms whose
outputs are time sequences of pitches (or simultaneous combinations thereof). Now, we present
some approaches that, building upon those, aim at identifying the notes that are likely to cor-
respond to the main melody. We refer to Gomez et al. [2003c] for an exhaustive review of the
sate-of-the-art in melodic description and transformation from audio recordings.

Melody extraction can be considered not only for polyphonic sounds, but also for mono-
phonic sounds as they may contain notes that do not belong to the melody (as for example grace
notes, passing notes or the case of several interleaved voices in a monophonic stream).

As argued in Nettheim [1992] and [Selfridge-Field, 1998, Section 1.1.3.], the derivation of
a melody from a sequence of pitches faces the following issues:

A single line played by a single instrument or voice may be formed by movement between
two or more melodic or accompaniment strands.

Two or more contrapuntal lines may have equal claim as “the melody.”

The melodic line may move from one voice to another, possibly with overlap.

There may be passages of figuration not properly considered as melody.

Some approaches try to detect note groupings. Experiments have been done on the way
listeners achieve melodic grouping, see [Scheirer, 2000, p.131] and McAdams [1994]. These
provide heuristics that can be taken as hypothesis in computational models.
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Other approaches make assumptions on the type of music to be analyzed. For instance,
methods can be different according to the complexity of the music (monophonic or polyphonic
music), the genre (classical with melodic ornamentations, jazz with singing voice, etc) or the
representation of the music (audio, MIDI, etc.).

In Uitdenbogerd and Zobel [1998], Uitdenbogerd evaluates algorithms that extract melody
from MIDI files containing channel information. Considering the highest notes as the one carrying
the melody gives the best results. According to Uitdenbogerd and Zobel [1998], it appears that
very few researches focus on this area of research in comparison to the interest that is granted to
other tasks such as melody matching and pattern induction.

Melodic Segmentation The goal of melodic segmentation is to establish a temporal structure on
a sequence of notes. It may involve different levels of hierarchy, as those defined by Lerdahl and
Jackendoff Lerdahl and Jackendoff [1983], and may include overlapping, as well as unclassified,
segments.

One relevant method proposed by Cambouropoulos Cambouropoulos [2001] is the Local
Boundary Detection Model (LBDM). This model computes the transition strength of each interval
of a melodic surface according to local discontinuities. In Cambouropoulos [2001], not only
pitch is used, but also temporal (inter-onset intervals, IOIs) and rest intervals. He compares
this algorithm with the punctuation rules defined by Friberg et al. from KTH,5 getting coherent
results. The LBDM has been used by Melucci and Orio Melucci and Orio [1999] for content-based
retrieval of melodies.

Another approach can be found in the Grouper6 module of the Melisma music analyzer,
implemented by Temperley and Sleator. This module uses three criteria to select the note
boundaries. The first one considers the gap score for each pair of notes, that is, the sum of
the IOIs and the offset-to-onset interval (OOI). Phrases receive a weight proportional to the gap
score between the notes at the boundary. The second one considers an optimal phrase length
in number of notes. The third one is related to the metrical position of the phrase beginning,
relative to the metrical position of the previous phrase beginning.

Spevak et al. Spevak et al. [2002] have compared several algorithms for melodic segmen-
tation: LBDM, the Melisma Grouper, and a memory-based approach, the Data-Oriented Parsing

5see http://www.speech.kth.se/music/performance_rules.html
6see http://www.link.cs.cmu.edu/music-analysis/grouper.html

http://www.speech.kth.se/music/performance_rules.html
http://www.link.cs.cmu.edu/music-analysis/grouper.html
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(DOP) from Bod Bod [2001]. They also describe other approaches to melodic segmentation.
To explore this issue, they have compared manual segmentation of different melodic excerpts.
However, according to them, “it is typically not possible to determine one ‘correct’ segmentation,
because the process is influenced by a rich and varied set of context.”

Miscellaneous melodic descriptors Other descriptors can be derived from a numerical anal-
ysis of the pitches of a melody and be used in diverse applications as comparative analysis
Toiviainen and Eerola [2001], melody retrieval Kostek [1998], Tzanetakis [2002], and algorithmic
composition Towsey et al. [2001]. Some of these descriptors are computed using features related
to structural, musical or perceptual aspects of sound. Some others are computed from note
descriptors (therefore they require algorithms for note segmentation, see on page 391). Yet other
descriptors can be computed as statistics of frame or sample features. One example are the pitch
histogram features proposed in Tzanetakis [2002].

Pitch class distribution

Many efforts have been devoted to the analysis of chord sequences and key in MIDI representations
of classical music, but little work has dealt directly with audio signals and with other musical
genres. Adapting MIDI-oriented methods would require a previous step of automatic transcrip-
tion of polyphonic audio, which, as argued in Scheirer [2000], Klapuri [2004b], is far from being
solved.

Some approaches extract information related to the pitch class distribution of music with-
out performing automatic transcription. The pitch-class distribution is directly related to the
chords and the tonality of a piece. Chords can be recognized from the pitch class distribution
without requiring the detection of individual notes. Tonality can be also estimated from the pitch
class distribution without a previous procedure of chord estimation.

Fujishima Fujishima [1999] proposes a system for chord recognition based on the pitch-
class profile (PCP), a 12-dimensional low-level vector representing the intensities of the twelve
semitone pitch classes. His chord recognition system compares this vector with a set of chord-
type templates to estimate the played chord. In Sheh [2003], chords are estimated from an audio
recordings by modeling sequences of PCPs with an HMM.

In the context of a key estimation system, Gomez Gomez [In print] proposes the Harmonic
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Figure 10.4: Block Diagram for HPCP Computation

PCPs (HPCPs) as extension of the PCPs: only the spectral peaks in a certain frequency band are
used ([100, 5000] Hz), a weight is introduced into the feature computation and a higher resolution
is used in the HPCP bins (decreasing the quantization level to less than a semitone). The procedure
for HPCP computation is illustrated in Figure 10.4. A transient detection algorithm Bonada [2000]
is used as preprocessing step in order to discard regions where the harmonic structure is noisy,
the areas located 50 ms before and after the transients are not analyzed. As a post-processing
step, HPCPs are normalized with respect to maximum values for each analysis frame, in order
to store the relative relevance of each of the HPCP bins.

In the context of beat estimation of drum-less audio signals, Goto and Muraoka Goto [1999]
also introduced the computation of a histogram of frequency components, used to detect chord
changes (this method does not identify chord names).



10.2. Audio content description 404

Correlation
HPCP
Mean
Vector

KeyProfileMatrix
(K)

Correlation
Matrix

(R)
Max

Key Note

Mode

Tonality strength

Figure 10.5: Block Diagram for Key Computation using HPCP

Constant Q profiles have also been used to characterize the tonal content of audio Purwins et al.
[2000]. Constant Q profiles are twelve-dimensional vectors, each component referring to a pitch
class, which are computed with the constant Q filter bank Brown J. C. [1992]. Purwins et al.
Purwins et al. [2003] present examples where constant Q profiles are used to track tonal centers.
In recent works, they use these features to analyze the interdependence of pitch classes and key
as well as key and composer.

Tzanetakis Tzanetakis [2002] proposes a set of features related to audio harmonic content
in the context of musical genre classification. These features are derived from a pitch histogram
that can be computed from MIDI or audio data: the most common pitch class used in the piece,
the frequency of occurrence of the main pitch class and the pitch range of a song.

Tonality: from chord to key

Pitch class distributions can be compared (correlated) with a tonal model to estimate the chords

(when considering small time scales) or the key of a piece (when considering a larger time scale).
This is the approach followed by Gomez in Gomez [In print] to estimate the tonality of audio
pieces at different temporal scales, as shown on Figure 10.5.

To construct the key-profile matrix shown on Figure 10.5, Gomez Gomez [In print] follows
a model proposed by Krumhansl for key estimation of MIDI file Krumhansl [1990]. This model
considers that tonal hierarchies may be acquired through internalization of the relative frequen-
cies and durations of tones. The algorithm estimates the key from a set of note duration values,
measuring how long each of the 12 pitch classes of an octave (C, C], etc.) have been played
in a melodic line. In order to estimate the key of the melodic line, the vector of note durations
is correlated to a set of key profiles or probe-tone profiles. These profiles represent the tonal
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hierarchies of the 24 major and minor keys, and each of them contains 12 values, which are the
ratings of the degree to which each of the 12 chromatic scale tones fit a particular key. They were
obtained by analyzing human judgments with regard to the relationship between pitch classes
and keys [Krumhansl, 1990, pp. 78-81]. Gomez adapts this model to deal with HPCPs (instead of
note durations) and polyphonies (instead of melodic lines), details of evaluations can be found
in Gomez [In print], together with an exhaustive review of computational models of tonality.

10.2.5 Rhythm

Representing rhythm

Imagine the following musical scene. Somebody (or some machine) is making music: musical
events are generated at given instants (onset times) and make up a temporal sequence. One way
to represent the rhythm of this sequence could be to specify an exhaustive and accurate list of
onset times, maybe together with some other musical feature characterizing those events as e.g.
durations, pitches or intensities (as is done in MIDI). However, the problem to this representation
is the lack of abstraction. There is more to rhythm than the absolute timings of successive musical
events, namely tempo, meter and timing Honing [2001].

Tempo Cooper et al. Cooper and B. [1960] define a pulse as “[...] one of a series of regularly
recurring, precisely equivalent stimuli. [...] Pulses mark off equal units in the temporal contin-
uum.” Commonly, ‘pulse’ and ‘beat’ are often used indistinctly and refer both to one element in
such a series and to the whole series itself.

The tempo is defined as the number of beats in a time unit (usually the minute). There is
usually a preferred pulse, which corresponds to the rate at which most people would tap or clap in
time with the music. However, the perception of tempo exhibits a degree of variability. It is not
always correct to assume that the pulse indicated in a score (Maelzel Metronome) corresponds to
the “foot-tapping” rate, nor to the actual “physical tempo” that would be an inherent property
of audio flows Drake et al. [1999]. Differences in human perception of tempo depend on age,
musical training, musical preferences and general listening context Lapidaki [1996]. They are
nevertheless far from random and most often correspond to a focus on a different metrical level
and are quantifiable as simple ratios (e.g. 2, 3, 1

2 or 1
3 ).
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Meter The metrical structure (or meter) of a musical piece is based on the coexistence of several
pulses (or “metrical levels”), from low levels (small time divisions) to high levels (longer time
divisions). The segmentation of time by a given low-level pulse provides the basic time span
to measure musical event accentuation whose periodic recurrences define other, higher, metrical
levels. The duration-less points in time, the beats, that define this discrete time grid obey a specific
set of rules, formalized in the Generative Theory of Tonal Music (GTTM, Lerdahl and Jackendoff
[1983]). Beats must be equally spaced. A beat at a high level must also be a beat at each lower
level. At any metrical level, a beat which is also a beat at the next higher level is called a downbeat,
and other beats are called upbeats.

The notions of time signature, measure and bar lines reflect a focus on solely two (or
occasionally three) metrical levels. Bar lines define the slower of the two levels (the measure) and
the time signature defines the number of faster pulses that make up one measure. For instance,
a 6

8 time signature indicates that the basic temporal unit is an eighth-note and that between two
bar lines there is room for six units. Two categories of meter are generally distinguished: duple
and triple. This notion is contained in the numerator of the time signature: if the numerator is a
multiple of two, then the meter is duple, if not a multiple of two but of three, the meter is triple.

The GTTM specifies that there must be a beat of the metrical structure for every note in a
musical sequence. Accordingly, given a list of note onsets, the quantization (or rhythm-parsing)
task aims at making it fit into Western music notation. Viable time points (metrical points) are
those defined by the different coexisting metrical levels. Quantized durations are then rational
numbers (e.g. 1, 1

4 , 1
6 ) relative to a chosen time interval: the time signature denominator.

Timing A major weakness of the GTTM is that it does not deal with the departures from
strict metrical timing which are apparent in almost all styles of music. Thus it is only really
suitable for representing the timing structures of musical scores, where the expressive timing
is not represented. There are conceptually two types of non-metrical timing: long-term tempo
deviations and short-term timing deviations (as e.g. Swing).

One of the greatest difficulties in analyzing performance data is that the two dimensions of
expressive timing are projected onto the single dimension of time. Mathematically, it is possible
to represent any tempo change as a series of timing changes and vice-versa, but these descriptions
are somewhat counterintuitive Honing [2001].
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Challenges in automatic rhythm description

Contrarily to what it may seem, automatically describing musical rhythm is not obvious. First of
all because it seems to entail two dichotomic processes: a bottom-up process enabling very rapidly
the percept of pulses from scratch, and a top-down process (a persistent mental framework) that
lets this induced percept guide the organization of incoming events Desain and Honing [1999].
Embodying in a computer program both reactivity to the environment and persistence of internal
representations is a challenge.

Rhythm description does not solely call for the handling of timing features (onsets and
offsets of musical tones). The definition, and understanding of the relevance, of other musical
features such as intensities or pitches are still open research topics.

Rhythm involves two dichotomic aspects that are readily perceived by humans: there
is both a strong and complex structuring of phenomena occurring at different time scales and
widespread departures from exact metrical timing. Indeed, inexact timings always occur because
of expressive performances, sloppy performances and inaccurate collection of timing data (e.g.
onset detection may have poor time precision and suffer false-alarms).

Furthermore, recent research indicates that even if perceived beats are strongly correlated
to onsets of musical tones, they do not necessarily line up exactly with them, our perception
rather favoring smooth tempo curves Dixon [2005].

Functional framework

The objective of automatic rhythm description is the parsing of acoustic events that occur in time
into the more abstract notions of tempo, timing and meter. Computer programs described in the
literature differ in their goals. Among others, some derive the beats and the tempo of a single
metrical level, others aim at deriving complete rhythmic transcriptions (i.e. scores) from musical
performances, others aim at determining some timing features from musical performances (such
as tempo changes, event shifts or swing factors), others aim at classifying musical signals by
their overall rhythmic similarities and still others aim at the determination of rhythm patterns.
Nevertheless, these computer programs share some functional aspects that we illustrate as func-
tional blocks of a general diagram on Figure 10.6 and briefly explain in turn in the following
paragraphs; we refer to Gouyon and Dixon [2005] for a more complete survey.
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Figure 10.6: Functional units of rhythm description systems.

Feature list creation Either starting from MIDI, other symbolic formats (e.g. in the format of
files containing solely onset times and durations Brown [1993]) or audio data, the first analysis
step is the creation of a feature list, i.e. the parsing, or “filtering,” of the data at hand into a
sequence assumed to convey the predominant information relevant to a rhythmic analysis.

These feature lists are defined here broadly, to include frame-based feature vectors as well
as lists of symbolic events. The latter include onset times, durations Brown [1993], relative ampli-
tude Dixon [2001], pitch Dixon and Cambouropoulos [2000], chords Goto [2001] and percussive
instrument classes Goto [2001]. Some systems refer to a data granularity of a lower level of ab-
straction: frames. Section 10.2.1 describes usual low-level features. In rhythm analysis, common
frame features are energy values and energy values for frequency sub-bands. Some systems
also measure energy variations between consecutive frames Scheirer [2000], Klapuri et al. [2005].
Low-level features other than energy (e.g. spectral flatness, temporal centroid) have also been
recently advocated Gouyon and Herrera [2003].

Pulse induction A metrical level (a pulse) is defined by the periodic recurrence of some musical
event. Therefore, computer programs generally seek periodic behaviors in feature lists in order
to select one (or some) pulse period(s) and also sometimes phase(s). This is the process of
pulse induction. For pulse induction, computer programs either proceed by pulse selection, i.e.
evaluating the salience of a restricted number of possible periodicities Parncutt [1994], or by
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computing a periodicity function, i.e. generating a continuous function plotting pulse salience versus
pulse period (or frequency) with the help of e.g. the Fourier transform, Wavelet transforms, the
autocorrelation function, bank of comb filters, etc.

In pulse induction, a fundamental assumption is made: The pulse period (and phase)
is stable over the data used for its computation. That is, there is no speed variation in that
part of the musical performance used for inducing a pulse. In that part of the data, remaining
timing deviations (if any) are assumed to be short-time ones (considered as either errors or
expressiveness features). They are either “smoothed out”, by considering tolerance intervals or
smoothing windows, or cautiously handled in order to derive patterns of systematic short-time
timing deviations as e.g. the swing (see on page 410).

Another step is needed to output a discrete pulse period (and optionally its phase) rather
than a continuous periodicity function, this is usually achieved by a peak-picking algorithm.

Pulse tracking Pulse tracking and pulse induction often occur as complementary processes.
Pulse induction models consider short term timing deviations as noise, assuming a relatively sta-
ble tempo, whereas a pulse tracker handles the short term timing deviations and attempts to deter-
mine changes in the pulse period and phase, without assuming that the tempo remains constant.
Another difference is that induction models work bottom-up, whereas tracking models tend to
follow top-down approaches, for example, driven by the pulse period and phase computed by
the pulse induction module, tracking is often a process of reconciliation between predictions
(driven by previous period and phase computations) and the observed data. Diverse formalisms
and techniques have been used in the design of pulse trackers: rule-based Desain and Honing
[1999], problem-solving Allen and Dannenberg [1990], agents Dixon [2001], adaptive oscilla-
tors Large and Kolen [1994], dynamical systems Cemgil et al. [2001], Bayesian statistics Raphael
[2002] and particle filtering Hainsworth and Macleod [2004]. A complete review can be found
in Gouyon and Dixon [2005].

Some systems rather address pulse tracking by repeated induction e.g. Scheirer [2000],
Laroche [2003], Klapuri et al. [2005]. A pulse is induced on a short analysis window (e.g. around
5 s of data), then the window is shifted in time and another induction takes place. Determining
the tempo evolution then amounts to connecting the observations at each step. In addition to
computational overload, one problem that arises with this approach to tracking is the lack of
continuity between successive observations and the difficulty to model sharp tempo changes.
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Quantization and time signature determination Few algorithms for time signature determina-
tion exist. The simplest approach is based on parsing the peaks of the periodicity function to find
two significant peaks, which correspond respectively to a fast pulse, the time signature denomina-
tor, and a slower pulse, the numerator Brown [1993]. The ratio between the pulse periods defines
the time signature. Another approach is to consider all pairs of peaks as possible beat/measure
combinations, and compute the fit of all periodicity peaks to each hypothesis Dixon et al. [2003].
Another strategy is to break the problem into several stages: determining the time signature
denominator (e.g. by tempo induction and tracking), segmenting the musical data with respect
to this pulse and compute features at this temporal scope and finally detecting periodicities in
the created feature lists Gouyon and Herrera [2003].

Quantization (or “rhythm parsing”) can be seen as a by-product of the induction of several
metrical levels, which together define a metrical grid. The rhythm of a given onset sequence can
be parsed by assigning each onset (independently of its neighbors) to the closest element in this
hierarchy. The weaknesses of such an approach are that it fails to account for musical context
(e.g. a triplet note is usually followed by 2 more) and distortions of the metrical structure. Some
models as Desain and Honing [1989] do account for musical context and possible distortions
of the metrical structure. However such distortions would in turn be easier to determine if
the quantized durations were known Allen and Dannenberg [1990]. Therefore, rhythm parsing
is often considered as a process simultaneous with tempo tracking, rather than subsequent to
it (hence the bi-directional arrow between these two modules in Figure 10.6 on page 408), see
e.g. Raphael [2002] and Cemgil and Kappen [2003].

Systematic deviation characterization In the pulse induction process, short-term timing devi-
ations can be “smoothed out” or cautiously handled so as to derive patterns of short-term timing
deviations such as swing: a long-short timing pattern of consecutive eight-notes. For instance,
Laroche [2001] proposes to estimate the swing jointly with tempo and beats at the half-note
level, assuming constant tempo: all pulse periods, phases and eight-note long-short patterns are
enumerated and a search procedure determines which best match the onsets.

Rhythmic pattern determination Systematic short-term timing deviations are important mu-
sical features. In addition, repetitive rhythmic patterns covering a longer temporal scope can also
be characteristic of some music styles. For instance, many electronic synthesizers feature tem-
plates of prototypical patterns such as Waltz, Cha Cha and the like. The length of such patterns
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is typically one bar, or a couple or them. Few algorithms have been proposed for the automatic
extraction of rhythmic patterns; they usually require the knowledge (or previous extraction) of
part of the metrical structure, typically the beats and measure Dixon et al. [2004].

Periodicity features Other rhythmic features, with a musical meaning less explicit than e.g.
the tempo or the swing, have recently been advocated, in particular in the context of designing
rhythm similarity distances. Most of the time, these features are derived from a parameteri-
zation of a periodicity function, as e.g. the salience of several prominent peaks Gouyon et al.
[2004], their positions Tzanetakis and Cook [2002], Dixon et al. [2003], selected statistics (high-
order moments, flatness, etc.) of the periodicity function considered as a probability density
function Gouyon et al. [2004] or simply the whole periodicity function itself Foote et al. [2002].

Future research directions

Current research in rhythm description addresses all of these aspects, with varying degrees of
success. For instance, determining the tempo of music with minor speed variations is feasi-
ble for almost all musical styles, if we do not insist that the system finds a specific metrical
level Gouyon et al. [in press]. Recent pulse tracking systems also reach high levels of accuracy.
On the other hand, accurate quantization, score transcription, determination of time signature
and characterization of intentional timing deviations are still open questions. Particularly, it
remains to be seen how well recently proposed models generalize to different musical styles.
New research directions include the determination of highly abstract rhythmic features required
for music content processing and music information retrieval applications, the definition of the
best rhythmic features and the most appropriate periodicity detection method.

10.2.6 Genre

Most music can be described in terms of dimensions such as melody, harmony, rhythm, etc.
These high-level features characterize music and at least partially determine its genre, but, as
mentioned in previous sections, they are difficult to compute automatically from audio. As a
result, most audio-related music information retrieval research has focused on low-level features
and induction algorithms to perform genre classification tasks. This approach has met with some
success XXXREF TO WIDMER CHAPTERXXX, but it is limited by the fact that the low level of
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representation may conceal many of the truly relevant aspects of the music. See XXXREF TO
WIDMER CHAPTERXXX for a review and more information on promising directions in genre
classification.

10.3 Audio content exploitation

We consider in this section a number of applications of content-based descriptions of audio
signals. Although audio retrieval (see page 412) is the one that has been addressed most often,
others deserve a mention, as content-based transformations (see page 418).

10.3.1 Content-based search and retrieval

Searching a repository of musical pieces can be greatly facilitated by automatic description of
audio and musical content (as e.g. fingerprints, melodic features, tempo, etc.).

A content-based music retrieval system is a search engine at the interface of a repository,
or organized database, of musical pieces. Typically,

1. it receives a query, defined by means of musical strategies (e.g. humming, tapping, provid-
ing an audio excerpt or some measures of a score) or textual strategies (e.g. using “words”
and/or “numbers” that describe some musical feature like tempo, mood, etc.) referring to
audio or musical descriptors,

2. it has access to the set of musical features extracted from the musical files in the repository,

3. it returns a list of ranked files or excerpts that

(a) are all relevant to the query (i.e. with high precision) or

(b) constitute the set of all relevant files in the database (i.e. high recall),

4. and, optionally, it processes some user-feedback information in order to improve its per-
formance in the future,
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Identification

With fingerprinting systems it is possible to identify an unlabeled piece of audio and therefore
provide a link to corresponding metadata (e.g. artist and song name). Depending on the
application, different importance may be given to the following requirements:

Accuracy: The number of correct identifications, missed identifications, and wrong identifica-
tions (false positives).

Reliability: This is of major importance for copyright enforcement organizations.

Robustness: Ability to accurately identify an item, regardless of the level of compression and
distortion or interference in the transmission channel. Other sources of degradation are
pitching, equalization, background noise, D/A-A/D conversion, audio coders (such as GSM
and MP3), etc.

Granularity: Ability to identify whole titles from excerpts a few seconds long. It requires to deal
with shifting, that is lack of synchronization between the extracted fingerprint and those
stored in the database and it adds complexity to the search (it needs to compare audio in
all possible alignments).

Security: Vulnerability of the solution to cracking or tampering. In contrast with the robustness
requirement, the manipulations to deal with are designed to fool the fingerprint identifica-
tion algorithm.

Versatility: Ability to identify audio regardless of the audio format. Ability to use the same
database for different applications.

Scalability: Performance with very large databases of titles or a large number of concurrent
identifications. This affects the accuracy and the complexity of the system.

Complexity: It refers to the computational costs of the fingerprint extraction, the size of the
fingerprint, the complexity of the search, the complexity of the fingerprint comparison, the
cost of adding new items to the database, etc.

Fragility: Some applications, such as content-integrity verification systems, may require the
detection of changes in the content. This is contrary to the robustness requirement, as
the fingerprint should be robust to content-preserving transformations but not to other
distortions.
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Figure 10.7: Content-based audio identification framework

The requirements of a complete fingerprinting system should be considered together with the fin-
gerprint requirements listed in section 10.2.3. Bear in mind that improving a certain requirement
often implies losing performance in some other.

The overall identification process mimics the way humans perform the task. As seen
in Figure 10.7, a memory of the recordings to be recognized is created off-line (top); in the
identification mode (bottom), unlabeled audio is presented to the system to look for a match.

Audio Content Monitoring and Tracking One of the commercial usages of audio identification
is that of remotely controlling the times a piece of music has been broadcasted, in order to claim
the broadcaster for doing the proper clearance of the involved rights Cano et al. [2002b].

Monitoring at the distributor end Content distributors may need to know whether
they have the rights to broadcast certain content to consumers. Fingerprinting helps identify
unlabeled audio in TV and radio channels repositories. It can also identify unidentified audio
content recovered from CD plants and distributors in anti-piracy investigations (e.g. screening
of master recordings at CD manufacturing plants).

Monitoring at the transmission channel In many countries, radio stations must pay
royalties for the music they air. Rights holders are eager to monitor radio transmissions in order
to verify whether royalties are being properly paid. Even in countries where radio stations can
freely air music, rights holders are interested in monitoring radio transmissions for statistical
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purposes. Advertisers are also willing to monitor radio and TV transmissions to verify whether
commercials are being broadcast as agreed. The same is true for web broadcasts. Other uses
include chart compilations for statistical analysis of program material or enforcement of cultural
laws (e.g. in France a certain percentage of the aired recordings must be in French). Fingerprint-
ing-based monitoring systems can be used for this purpose. The system “listens” to the radio and
continuously updates a play list of songs or commercials broadcast by each station. Of course, a
database containing fingerprints of all songs and commercials to be identified must be available
to the system, and this database must be updated as new songs come out. Examples of commer-
cial providers of such services are: http://www.bdson-line.com, http://www.musicreporter.net,
http://www.audiblemagic.com and http://www.yacast.fr.

Additionally, audio content can be found in Web pages and Web-based Peer-to-Peer net-
works. Audio fingerprinting combined with a web crawler can identify their content and report
it to the corresponding right owners (e.g. http://www.baytsp.com).

Monitoring at the consumer end In usage-policy monitoring applications, the goal is to
avoid misuse of audio signals by the consumer. We can conceive a system where a piece of music
is identified by means of a fingerprint and a database is contacted to retrieve information about
the rights. This information dictates the behavior of compliant devices (e.g. CD and DVD players
and recorders, MP3 players or even computers) in accordance with the usage policy. Compliant
devices are required to be connected to a network in order to access the database.

Added-value services Some systems store metadata related to audio files in databases ac-
cessible through the internet. Such metadata can be relevant to a user for a given applica-
tion and covers diverse types of information related to an audio file: e.g. how it was com-
posed and how it was recorded, the composer, year of composition, the album cover im-
age, album price, artist biography, information on the next concerts, etc. Fingerprinting can
then be used to identify a recording and retrieve the corresponding metadata. For exam-
ple, MusicBrainz (http://www.musicbrainz.org), Id3man (http://www.id3man.com) or Moodlogic
(http://www.moodlogic.com) automatically label collections of audio files; the user can download
a compatible player that extracts fingerprints and submits them to a central server from which
metadata associated to the recordings is downloaded. Gracenote (http://www.gracenote.com)
recently enhanced their technology based on CDs’ table of contents with audio fingerprinting.

Another application consists in finding or buying a song while it is being broadcast, by

http://www.bdson-line.com
http://www.musicreporter.net
http://www.audiblemagic.com
http://www.yacast.fr
http://www.baytsp.com
http://www.musicbrainz.org
http://www.id3man.com
http://www.moodlogic.com
http://www.gracenote.com
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means of mobile-phone transmitting its GPS-quality received sound (e.g. http://www.shazam.com).

Summarization

Summarization, or thumbnailing, is essential for providing fast-browsing functionalities to con-
tent processing systems. An audiovisual summary that can be played, skipped upon, replayed or
zoomed can save time to the user and help him/her to get a glimpse of “what the music is about,”
especially when using personal media devices. Music summarization consists in determining
the key elements of a musical sound file and rendering them in the most efficient way. There are
two tasks here: first extracting structure, and then creating aural and visual representations of
this structure. Extracting a good summary from a sound file needs a comprehensive description
of its content, plus some perceptual and cognitive constraints to be derived from users. An
additional difficulty here is that different types of summaries can coexist, and that different users
will probably require different summaries. Because of this amount of difficulty, the area of music
summarization is still very underdeveloped, a review of recent promising approaches can be
found in Ong and Herrera [2004].

Play-list generation

This area concerns the design of lists of music pieces that satisfy some ordering criteria, with
respect to content descriptors previously computed, indicated (explicitly or implicitly) by the
listener. Play-list generation is usually constrained by time-evolving conditions (i.e. “start with
slow-tempo pieces, then progressively increase tempo”) Pachet et al. [2000]. Besides the play-
list construction problem, we can also mention related problems such as achieving seamless
transitions (in user-defined terms such as tempo, tonality, loudness) between the played pieces.

Music browsing and recommendation

Music browsing and recommendation are very demanded functionalities, especially among
youngsters. Recommendation consists in suggesting, providing guidance, or advising a potential
consumer, in order he/she may find an interesting musical file in e.g. an on-line music store.

Nowadays, this is possible by querying artist or song names (or other types of editorial
data such as genre), or by browsing recommendations generated by collaborative filtering, i.e.

http://www.shazam.com
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using recommender systems that exploit information of the type “users that bought this album
also bought this album.” An obvious drawback of the first approach is that consumers need to
know the name of the song or the artist beforehand. The second approach is only suitable when
a number of consumers has heard and rated the music. This situation makes it difficult for users
to access and discover the vast amount of music composed and performed by unknown artists
which is available in an increasing number of sites (e.g. http://www.magnatune.com) and which
nobody yet rated nor described.

Content-based methods represent an alternative to these approaches. User musical pref-
erences can be estimated for recommendation purposes by automatically analyzing (e.g. via
background processes) the songs they store on hardware, or e.g. those they listen more often.
See Cano et al. [2005b] for the description of a recent large-scale music browsing and recommen-
dation system based on automatic description of music content.7

It is reasonable to assume that these different approaches will merge in the near future and
result in improved music browsing and recommendation systems.

Content visualization

The last decade has witnessed a great progress in the field of data visualization. Massive amounts
of data can be represented in multidimensional graphs in order to facilitate comparisons, grasp
the patterns and relationships between data, and improve our understanding of them. Four
purposes of information visualization can be distingushed Hearst [1999]:

Exploration, where visual interfaces can also be used as navigation and browsing interfaces.

Computation, where images are used as tools for supporting the analysis and reasoning about
information. Data insight is usually facilitated by good data visualizations.

Communication, where images are used to summarize what otherwise would need many words
and complex concepts to be understood. Music visualization tools can be used to present
concise information about relationships extracted from many interacting variables.

Decoration, where content data are used to create attractive pictures whose primary objective is
not the presentation of information but the aesthetic amusement.

7See also http://musicsurfer.iua.upf.edu

http://www.magnatune.com
http://musicsurfer.iua.upf.edu
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It is likely that in the near future we witness an increasing exploitation of data visualization
techniques in order to enhance song retrieval, collection navigation and music discovery.

10.3.2 Content-based audio transformations

Transformations of audio signals have a long tradition Zoelzer [2002]. A recent trend in this area of
research is the editing and transformation of musical audio signals triggered by explicit musically-
meaningful representational elements, in contrast to low-level signal descriptors. These recent
techniques have been coined content-based audio transformations Amatriain et al. [2003], or
adaptive digital audio effects Verfaille et al. [in print], and are based on the type of description of
audio signals detailed above in section 10.2. In this section, we give examples of such techniques,
following increasing levels of abstraction in the corresponding content description.

Loudness modifications

The most commonly known effects related to loudness are the ones that modify the sound inten-
sity level: volume change, tremolo, compressor, expander, noise gate and limiter Verfaille et al.
[in print].

However, when combined with other low-level features, loudness is correlated to higher-
level descriptions of sounds, such as the timbre or the musical intentions of a performer. It can
therefore be used as a means to control musically-meaningful aspects of sounds.

In the case of a piano, for example, it is possible to obtain the whole range of possible
musical loudness values from the analysis of a single note Sola [1997]. In Sola [1997], the best
implementation is based on taking the highest possible dynamic as a starting point, the remaining
lower loudness values being obtained by subtraction of higher-range spectral information.

In the case of the singing voice, some studies have been carried out and are summarized
by Sundberg in Sundberg [1987]. Using Sundberg’s nomenclature, it is possible, under certain
conditions, to infer the source spectrum modifications from uttering the same vowel at different
loudness of phonation. Building upon this assumption, Fabig and Janer [2004] propose a method
for modifying the loudness of the singing voice by detecting automatically the excitation slope.
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Time scaling

In a musical context, time scaling can be understood changing the pace of a musical signal, its
tempo. If a musical performance is time-scaled to a different tempo, we should expect to listen to
the same notes starting at a scaled time pattern, but with durations modified linearly according
to the tempo change. The pitch of the notes should however remain unchanged, as well as the
perceived expression. Thus, for example, vibratos should not change their depth, tremolo or rate
characteristics. And of course, the audio quality should be preserved in such a way that if we
had never listened to that musical piece, we would not be able to know if we were listening to
the original recording or to a transformed one.

Time-scale modifications can be implemented in different ways. Generally, algorithms are
grouped in three different categories: time domain techniques, phase-vocoder and variants, and
signal models. In the remainder of this section we explain the basics of these approaches in turn.

Time domain techniques Time domain techniques are the simplest methods for performing
time-scale modification. The simplest (and historically first) technique is the variable speed
replay of analog audio tape recorders McNally [1984] A drawback of this technique is that
during faster playback, the pitch of the sound is raised while the duration is shortened. On
the other hand, during slower playback, the pitch of the sound is lowered while the duration is
lengthened. Many papers show good results without scaling frequency by segmenting the input
signal into several windowed sections and then placing these sections in new time locations
and overlapping them to get the time scaled version of the input signal. This set of algorithms
is referred to as Overlap-Add (OLA). To avoid phase discontinuities between segments, the
synchronized OLA algorithm (SOLA) uses a cross-correlation approach to determine where
to place the segment boundaries Wayman et al. [1989]. In TD-PSOLA Moulines et al. [1989],
the overlapping operation is performed pitch-synchronously to achieve high quality time-scale
modification. This works well with signals having a prominent basic frequency and can be used
with all kinds of signals consisting of a single signal source. When it comes to a mixture of
signals, this method will produce satisfactory results only if the size of the overlapping segments
is increased to include a multiple of cycles thus averaging the phase error over a longer segment
making it less audible. More recently, WSOLA Verhelst and Roelands [1993] uses the concept of
waveform similarity to ensure signal continuity at segment joints, providing high quality output
with high algorithmic and computational efficiency and robustness. All the aforementioned
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techniques consider equally transient and steady state parts of the input signal, thus time-scale
them both in the same way. To get better results, it is preferable to detect the transients regions
and not time-scale them, just translate them into a new time position, while time-scaling the
non-transient segments. The earliest mention of this technique can be found in the Lexicon 2400

time compressor/expander from 1986. This model detected transients, and only time-scales the
remaining audio using TD-PSOLA style algorithm. In Lee et al. [1997] it is shown that using
time-scale modification on only non-transient parts of speech improves the intelligibility and
quality of the resulting time-scaled speech.

Phase vocoder and variants The phase-vocoder is a relative old technique that dates from the
70’s Portnoff [1976]. It is a frequency domain algorithm computationally quite more expensive
than time domain algorithms. However it can achieve high-quality results even with high
time-scale factors. Basically, the input signal is split into many frequency channels, uniformly
spaced, usually using FFT. Each frequency band (bin) is decomposed into magnitude and phase
parameters, which are modified and re-synthesized by the IFFT or a bank of oscillators. With
no transformations, the system allows a perfect reconstruction of the original signal. In the case
of time-scale modification, the synthesis hop size is changed according to the desired time-scale
factor. Magnitudes are linearly interpolated and phases are modified in such a way that phase
consistency are maintained across the new frame boundaries. The phase-vocoder introduces
signal smearing for impulsive signals due to the loss of phase alignment of the partials.

A typical drawback of the phase vocoder is the loss of vertical phase coherence that
produces reverberation or loss of presence in the output. This effect is also referred to as
phasiness. Recently, the synthesis quality has been improved applying phase-locking tech-
niques Laroche and Dolson [1999] among bins around spectral peaks. Note that adding peak
tracking to the spectral peaks, the phase-vocoder resembles the sinusoidal modeling algorithms,
which is introduced in the next paragraph.

Another traditional drawback of the phase vocoder is the bin resolution dilemma: the
phase estimates are incorrect if more than one sinusoidal peak reside within a single spectral
bin. Increasing the window may solve the phase estimation problem, but it implies a poor time
resolution and smooths the fast frequency changes. And the situation gets worse in the case
of polyphonic music sources because then the probability is higher that sinusoidal peaks from
different sources will reside in the same spectrum bin. A recent technology allows different
temporal resolutions at different frequencies by a convolution of the spectrum with a variable
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kernel function Hoek [1999]. Thus, long windows are used to calculate low frequencies, while
short windows are used to calculate high frequencies. Other approaches approximate a constant-
Q phase-vocoder based on wavelet transforms or nonuniform sampling.

Techniques based on signal models Signal models have the ability to split the input signal
into different components which can be parameterized and processed independently giving a
lot of flexibility for transformations. Typically these components are sinusoids, transients and
noise. In sinusoidal modeling McAulay and Quatieri [1986] the input signal is represented as a
sum of sinusoids with time-varying amplitude, phase and frequency. Parameter estimation can
be improved by using interpolation methods, signal derivatives and special windows. Time-
scale using sinusoidal modeling achieves good results with harmonic signals, especially when
keeping the vertical phase coherence. However it fails to successfully represent and transform
noise and transient signals. Attacks are smoothed and noise sounds artificial. The idea of
subtracting the estimated sinusoids from the original sound to obtain a residual signal is proposed
in ?, this residual can then be modeled as a stochastic signal. This method allows to split e.g.
a flute sound into the air flow and the harmonics components, and to transform both parts
independently. This technique successfully improves the quality of time-scale transformations
but fails to handle transients, which are explicitly handled in Verma et al. [1997]. Then, all three
components (sinusoidal, noise and transient) can be modified independently and re-synthesized.
When time-scaling an input signal, transients can successfully be translated to new onset location,
preserving their perceptual characteristics.

Timbre modifications

Timbre is defined as all those characteristics that distinguish two sounds of the same pitch,
duration and loudness. As a matter of fact, timbre perception depends on many characteristics of
the signal such as its instantaneous spectral shape and its evolution, the relation of its harmonics,
and some other features related to the attack, release and temporal structure.

Timbre instrument modification can be achieved by many different techniques. One of
them is to modify the input spectral shape by timbre mapping. Timbre mapping is a general
transformation performed by warping the spectral shape of a sound by means of a mapping
function g( f ), that maps frequencies of the transformed spectrum ( fy) to frequencies of the initial
spectrum ( fx) via a simple equation fy = g( fx).
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Linear scaling (compressing or expanding) is a particular case of timbre mapping in which
the mapping function pertains to the family fy = k ∗ fx, where k is the scale factor, usually
between 0.5 and 2. The timbre scaling effect resembles modifications of the size and shape of the
instrument.

The shifting transformation is another particular case of the timbre mapping as well in
which g( f ) can be expressed as fy = fx + c, where c is an offset factor.

Morphing Another way of accomplishing timbre transformations is to modify the input spectral
shape by means of a secondary spectral shape. This is usually referred to as morphing or cross-

synthesis. In fact, morphing is a technique with which, out of two or more elements, we can
generate new ones with hybrid properties. In the context of video processing, morphing has been
widely developed and enjoys great popularity in commercials, video clips and films where faces
of different people change one into another or chairs mutate into e.g. elephants. Analogously, in
the context of audio processing, the goal of most of the developed morphing methods has been
the smooth transformation from one sound to another. Along this transformation, the properties
of both sounds combine and merge into a resulting hybrid sound.

With different names, and using different signal processing techniques, the idea of audio
morphing is well known in the computer music community Serra [1994], Slaney et al. [1996]. In
most algorithms, morphing is based on the interpolation of sound parameterizations resulting
from analysis/synthesis techniques, such as the short-time Fourier transform, linear predictive
coding or sinusoidal models.

Voice timbre Whenever the morphing is performed by means of modifying a reference voice
signal in matching its individuality parameters to another, we can refer to it as voice conversion.
Some applications for the singing voice exist in the context of karaoke entertainment Cano et al.
[2000], see also Amatriain et al. [2002] and Bonada [2005] on the related topics of gender change
and unison choir generation, respectively.

Still for the particular case of voice, other finer-grained transformations exist to modify
the timbre character (without resorting to a morphing between two spectral shapes): e.g. rough,
growl, breath and whisper transformations.

Roughness in voice can come from different pathologies such as biphonia, or diplophonia,
and can combine with many other voice tags such as “hoarse” or “creaky.” However here we
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will refer to a rough voice as the one due to cycle to cycle variations of the fundamental frequency
(jitter), and the period amplitude (shimmer). The most common techniques used to synthesize
rough voices work with a source/filter model and reproduce the jitter and shimmer aperiodicities
in time domain Childers [1990]. These aperiodicities can be applied to the voiced pulse-train
excitation by taking real patterns that have been extracted from rough voice recordings or by
using statistical models Schoentgen [2001]. Spectral domain techniques have also proved to be
valid to emulate roughness Loscos and Bonada [2004].

Growl phonation is often used when singing jazz, blues, pop and other music styles
as an expressive accent. Perceptually, growl voices are close to other dysphonic voices such
as “hoarse” or “creaky,” however, unlike these others, growl is always a vocal effect and not a
permanent vocal disorder. According to Sakakibara et al. [2004], growl comes from simultaneous
vibrations of the vocal folds and supra-glottal structures of the larynx. The vocal folds vibrate
half periodically to the aryepiglottic fold vibration generating sub-harmonics. Growl effect can
be achieved by adding these sub-harmonics in frequency domain to the original input voice
spectrum Loscos and Bonada [2004]. These sub-harmonics follow certain magnitude and phase
patterns that can be modeled from spectral analyzes of real growl voice recordings.

Breath can be achieved by different techniques. One is to increase the amount of the noisy
residual component in those sound models in which there is a sinusoidal-noise decomposition.
For sound models based on the phase-locked vocoder (see on page 419) a more breathy timbre
can be achieved by filtering and distorting the harmonic peaks.

The whisper effect can be obtained by equalizing a previously recorded and analyzed
template of a whisper utterance. The time behavior of the template is preserved by adding to
the equalization the difference between the spectral shape of the frame of the template currently
being used and an average spectral shape of the template. An “anti-proximity” filter may be
applied to achieve a more natural and smoother effect Fabig and Janer [2004].

Rhythm transformations

In addition to tempo changes (see section 10.3.2), existing music editing softwares provide sev-
eral rhythm transformation functionalities. For instance, any sequencer provides the means to
adjust MIDI note timings to a metrical grid (“quantization”) or a predefined rhythmic template.
By doing a appropriate mapping between MIDI notes and audio samples, it is therefore possible
to apply similar timing changes to audio mixes. But when dealing with general polyphonic
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musical excerpts, without corresponding MIDI scores, these techniques cannot be applied. A
few commercial applications implement techniques to transform the rhythm of general poly-
phonic musical excerpts, they are restricted to swing transformations, a review can be found
in Gouyon et al. [2003].

A technique for swing transformation has also been proposed in Gouyon et al. [2003] which
consists in a description module and a transformation module. The description module does
onset detection and rhythmic analysis. Swing is relative to the length of consecutive eighth-notes,
it is therefore necessary to determine the beat indexes of eighth-notes. But this is not sufficient,
one must also describe the excerpt at a the next higher (slower) metrical level, the quarter-note,
and determine the eighth-note “phase”, that is, determine in a group of two eighth-notes which
is the first one. Indeed, it is not at all the same to perform a long-short pattern as a short-long
pattern. The existing ratio between consecutive eighth-notes is also be estimated. This ratio can
be changed, in the transformation module, by shortening or lengthening the first eighth-notes of
each quarter-note, and lengthening or shortening accordingly the second eighth-notes. This is
done with time scaling techniques, see 10.3.2 for a review of such techniques. In Gouyon et al.
[2003], time-scaling is done in real-time and can be controlled by a “User Swing Ratio,” while
playing back the audio file (in a loop), the user can continuously adjust the swing ratio.

Having found evidence for the fact that deviations occurring within the scope of the
smallest metrical pulse are very important for musical expressiveness, Bilmes [1993] proposes
additional rhythmic transformations based on a high-level description of the rhythmic content
of audio signals.

Melodic transformations

Melodic transformations such as pitch discretization to temperate scale and intonation apply direct
modifications to the fundamental frequency envelope. Arguably, these transformations may be
considered low level transformations, however, they do change the way a high-level descriptor,
namely the melody, is perceived by the listener.

Intonation transformations are achieved by stretching or compressing the difference be-
tween the analysis pitch envelope and a low pass filtered version of it. The goal of the transfor-
mation is to increase or decrease the sharpness of the note attack, it is illustrated on Figure 10.8.

Pitch discretization to temperate scale can be accomplished by forcing the pitch to take the



10.3. Audio content exploitation 425

Figure 10.8: Intonation transformation.

nearest frequency value of the equal temperate scale. It is indeed a very particular case of pitch
transposition where the pitch is quantified to one of the 12 semitones of an octave Amatriain et al.
[2003].8

Other melodic transformations can be found in the software Melodyne9 and in Gomez et al.
[2003d] as transposition (global change of pitch), horizontal symmetry, in which the user can choose
a pitch value (arbitrary or some global descriptor related to pitch distribution as minimum,
maximum or mean pitch value of the melody) and perform a symmetric transformation of the
note pitches with respect to this value on a horizontal axis, contour direction changes in which the
user can change the interval direction without changing the interval depth (e.g. converting an
ascending octave to a descending one), etc. Although these transformations are conceptually
simple, they correspond to usual music composition procedures and can create dramatic changes
that may enhance the original material (if used in the right creative context).

Finally, melodies of monophonic instruments can also be transformed by applying changes
on other high-level descriptors in addition to the pitch, such as tempo curves Grachten et al.
[2004] and note timing and loudness Ramirez et al. [2004], see XXXREF GOEBL CHAPTERXXX
for more information on analysis and generation of expressive musical performances.

Harmony transformations

According to Amatriain et al. [2002], Verfaille et al. [in print], harmonizing a sound can be defined
as mixing a sound with several pitch-shifted versions of it. This requires two parameters: the

8See also Antares’ Autotune, http://www.antarestech.com/.
9http://www.celemony.com/melodyne

http://www.antarestech.com/
http://www.celemony.com/melodyne
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number of harmonies and the pitch for each of these. Pitches of the voices to generate are
typically specified by the key and chord of harmonization. In case the key and chord is estimated
from the analysis of the input pitch and the melodic context Pachet and Roy [1998], some refer
to “intelligent harmonizing.”10

An application of harmonizing in real-time monophonic solo voices is detailed in Amatriain et al.
[2002].

10.4 Perspectives

All areas of high level description of musical audio signals will, without doubt, witness rapid
progresses in the near future. We believe however that a critical element to foster these progresses
lies in the systematic use of large-scale evaluations Cano et al. [2004].

Evaluations Developing technologies related to content processing of musical audio signals
requires data. For instance, implementing algorithms for automatic instrument classification
requires annotated samples of different instruments. Implementing a voice synthesis and trans-
formation software calls for repositories of voice excerpts sung by professional singers. Testing
a robust beat-tracking algorithm requires songs of different styles, instrumentation and tempi.
Building models of musical content with a machine learning rationale calls for large amounts of
data. Besides, running an algorithm on big amounts of diverse data is a requirement to ensure
its quality and reliability.

In other scientific disciplines long-term improvements have shown to be bounded to sys-
tematic evaluation of models. For instance, text retrieval techniques significantly improved over
the year thanks to the TREC initiative (see http://trec.nist.gov). TREC evaluations proceed
by giving access to research teams to a standardized, large-scale test collection of text, a stan-
dardized set of test queries, and requesting a standardized way of generating and presenting
the results. Different TREC tracks have been created over the years (text with moving images,
web retrieval, speech retrieval, etc.) and each track has developed its own special test collec-
tions, queries and evaluation requirements. The standardization of databases and evaluation
metrics greatly facilitated progress in the fields of Speech Recognition Przybocki and Martin

10see TC-Helicon’s Voice Pro, http://www.tc-helicon.com/VoicePro.

http://trec.nist.gov
http://www.tc-helicon.com/VoicePro
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[1989], Pearce and Hirsch [2000], Machine Learning Guyon et al. [2004] or Video Retrieval (see
http://www-nlpir.nist.gov/projects/trecvid/).

In 1992, the visionary Marvin Minsky declared Minsky and Laske [1992]: “the most critical
thing, in both music research and general AI research, is to learn how to build a common music
database.” More than 10 years later, this is still an open issue. Since a few years, the music content
processing community has recognized the necessity to conduct rigorous and comprehensive
evaluations Downie [2002, 2003b]. However, we are still far from having set a clear path to be
followed for evaluating research progresses. Downie Downie [2003b] has listed the following
urgent methodological problems to be addressed to by the research community:

1. there is no standard collection of music against which to test content description or ex-
ploitation techniques;

2. there are no standardized sets of performance tasks;

3. there are no standardized evaluation metrics.

As a first step, an audio description contest took place during the fifth edition of the ISMIR,
in Barcelona, Spain, in October 2004. The goal of this contest was to compare state-of-the-art
audio algorithms and systems relevant for some tasks of music content description, namely genre
recognition, artist identification, tempo extraction and melody extraction Cano et al.. It is the first
published large-scale evaluation of audio description algorithms, and the first initiative to make
data and legacy metadata publicly available (see http://ismir2004.ismir.net for more details).
However, it addresses a small part of the bulk of research going on in music content processing.
Future editions of the ISMIR are likely to continue this effort and will certainly widen its scope,
from evaluation of content description algorithms to evaluations of complete MIR systems.

Acknowledgments

This work has been partially funded by the European IST project 507142 SIMAC (Semantic
Interaction with Music Audio Contents),11 and the HARMOS E-Content project.12 The authors

11http://www.semanticaudio.org
12http://www.harmosproject.com

http://www-nlpir.nist.gov/projects/trecvid/
http://ismir2004.ismir.net
http://www.semanticaudio.org
http://www.harmosproject.com


10.4. Perspectives 428

wish to thank their colleagues in the Music Technology Group for their help. Thanks also to Simon
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