
Multimedia Systems (2008) 14:15–32
DOI 10.1007/s00530-007-0109-6

REGULAR PAPER

A framework for efficient and rapid development
of cross-platform audio applications

Xavier Amatriain · Pau Arumi · David Garcia

Published online: 6 November 2007
© Springer-Verlag 2007

Abstract In this article, we present CLAM, a C++ software
framework, that offers a complete development and research
platform for the audio and music domain. It offers an abstract
model for audio systems and includes a repository of
processing algorithms and data types as well as all the nec-
essary tools for audio and control input/output. The frame-
work offers tools that enable the exploitation of all these
features to easily build cross-platform applications or rapid
prototypes for media processing algorithms and systems.
Furthermore, included ready-to-use applications can be used
for tasks such as audio analysis/synthesis, plug-in devel-
opment, feature extraction or metadata annotation. CLAM
represents a step forward over other similar existing environ-
ments in the multimedia domain. Nevertheless, it also shares
models and constructs with many of those. These commonal-
ities are expressed in the form of a metamodel for multimedia
processing systems and a design pattern language.

Keywords Software frameworks · Multimedia ·
Metamodels · Design patterns · Audio processing ·
Rapid prototyping

X. Amatriain (B)
University of California Santa Barbara, Santa Barbara, CA, USA
e-mail: xavier@create.ucsb.edu

Present Address:
X. Amatriain
Telefonica R&D, Via Augusta 177, 08021 Barcelona, Spain
e-mail: xar@tid.es

P. Arumi · D. Garcia
Universitat Pompeu Fabra, Barcelona, Spain
e-mail: parumi@iua.upf.edu

D. Garcia
e-mail: dgarcia@iua.upf.edu

1 Introduction

The history of software frameworks is very much related to
the evolution of the multimedia field itself. Many of the most
successful and well-known examples of software frameworks
deal with graphics, image or multimedia.1 Although probably
less known, the audio and music fields also have a long tra-
dition of similar development tools. And it is in this context
where we find CLAM, a framework that recently received
the 2006 ACM Best Open Source Multimedia Software
award.

CLAM stands for C++ Library for Audio and Music and it
is a full-fledged software framework for research and appli-
cation development in the audio and music domain with
applicability also to the broader multimedia domain. It offers
a conceptual model; algorithms for analyzing, synthesizing
and transforming audio signals; and tools for handling audio
and music streams and creating cross-platform applications.

The CLAM framework is cross platform. All the code is
ANSI C++ and it is regularly compiled under GNU/
Linux, Windows and Mac OSX using FLOSS (Free Libre
Open Source Software) tools, such as automatic integrated
building/testing/versioning systems, and agile practices such
Test-Driven Development.

Although parts of the framework have already been
presented in previous articles (see [4] and [8], for instance)
in this article we will give a thorough overview of the frame-
work when it has now reached its first stable regime with the
publication of the 1.0 release.

1 The first object-oriented frameworks to be considered as such are the
MVC (model view controller) for Smalltalk [13] and the MacApp for
Apple applications [52]. Other important frameworks from this initial
phase were ET++ [50] and interviews. Most of these seminal frame-
works were related to graphics or user interfaces.

123

16 X. Amatriain et al.

Fig. 1 CLAM development
process and related activities

Rough
Domain
Analysis

Application-driven
Development

Rough
Metamodel

Identification

Metamodel
Refinement

Almost black-box
Behavior

Metamodel
Formalization

Analysis
Patterns

Application

Design
Patterns

Application

Usage
Patterns

Identification

Pattern
Language

Formalization

Domain
Patterns

Idenfication

Activities at the
Framework Level

Activities at the
Metamodel Level

Activities at the
Pattern Level

We will explain the different CLAM components and the
applications included in the framework in Sect. 3. In Sect. 4,
we will also explain the rapid prototyping features that have
been added recently and already constitute one of its major
assets.

Because CLAM cannot be considered in isolation in
Sect. 5, we present a brief summary of a more extensive
review of related environments that has taken place during
the design process.

In this sense, the framework is not only valuable for its
features but also for other outputs of the process that can be
considered as reusable components and approaches for the
multimedia field. The process of designing CLAM generated
reusable concepts and ideas that are formalized in the form of
a general purpose domain-specific metamodel and a pattern
language both of which are outlined in the next section.

2 Metamodels and patterns

During the CLAM development process several parallel
activities have taken place (see Fig. 1). While some see-
ked the objective of having a more usable framework, others
dealt with also coming up with the appropriate abstractions
and reusable constructs. In this section, we will focus on

the metamodel that has been abstracted and the recurring
design patterns that have been identified. Most of these ideas,
although a result of the CLAM process itself, are validated
by their presence in many other multimedia frameworks and
environments.

2.1 4 MPS

The object-oriented metamodel2 for multimedia processing
systems, 4 MPS for short, provides the conceptual framework
(metamodel) for a hierarchy of models of media processing
systems in an effective and general way. The metamodel is
not only an abstraction of many ideas found in the CLAM
framework but also the result of an extensive review of sim-
ilar frameworks (see Sect. 5) and collaborations with their
authors. Therefore, the metamodel reflects ideas and con-
cepts that are not only present in CLAM but in many sim-
ilar environments. Although initially derived for the audio
and music domains, it presents a comprehensive conceptual
framework for media signal processing applications. In this

2 The word metamodel is here understood as a “model of a family of
related models”, see [3] for a thorough discussion on the use of meta-
models and how frameworks generate them.

123

A framework for development of cross-platform audio application 17

Fig. 2 Graphical model of a 4-MPS processing network. Processing objects are connected through ports and controls. Horizontal left-to-right
connections represents the synchronous signal flow while vertical top-to-bottom connections represent asynchronous control connections

section, we provide a brief outline of the metamodel, see [5]
for a more detailed description.

The 4 MPS metamodel is based on a classification of
signal processing objects into two categories: Processing
objects that operate on data and control, and Data objects that
passively hold media content. Processing objects encapsulate
a process or algorithm; they include support for synchronous
data processing and asynchronous event-driven control as
well as a configuration mechanism and an explicit life cycle
state model. On the other hand, data objects offer a homoge-
neous interface to media data, and support for metaobject-like
facilities such as reflection and serialization.

Although the metamodel clearly distinguishes between
two different kinds of objects the managing of data con-
structs can be almost transparent for the user. Therefore, we
can describe a 4-MPS system as a set of processing objects
connected in graphs called Networks (see Fig. 2).

Because of this the metamodel can be expressed in the lan-
guage of graphical models of computation as a context-aware
dataflow network (see [30] and [48]) and different properties
of the systems can be derived in this way.

Figure 3 is a representation of a 4-MPS processing object.
Processing objects are connected through channels. Channels
are usually transparent to the user that should manage net-

Fig. 3 A 4-MPS processing object detailed representation. A process-
ing object has input and output ports and incoming and outgoing con-
trols. It receives/sends synchronous data to process through the ports
and receives/sends control events that can influence the process through
its controls. A processing object also has a configuration that can be set
when the object is not running

works by simply connecting ports. However, they are more
than a simple communication mechanism as they act as FIFO
queues in which messages are enqueued (produced) and de-
queued (consumed).

123

18 X. Amatriain et al.

The metamodel offers two kinds of connection mecha-
nisms: ports and controls. Ports transmit data and have a
synchronous dataflow nature while controls transmit events
and have an asynchronous nature. By synchronous, we mean
that messages are produced and consumed at a predictable
—if not fixed — rate.

A processing object could, for example, perform a low fre-
quency cut-off on an audio stream. The object will have an
input-port and an output-port for receiving and delivering the
audio stream. To make it useful, a user might want to control
the cut-off frequency using a GUI slider. Unlike the audio
stream, control events arrive sparsely or in bursts. A process-
ing object receives that kind of events through controls.

The data flows through the ports when a processing is
triggered (by receiving a Do() message). Processing objects
can consume and produce at different rates and consume an
arbitrary number of tokens at each firing. Connecting these
processing objects is not a problem as long as the ports are
of the same data type (see the Typed Connections pattern
in Sect. 2.3). Connections are handled by the FlowControl.
This entity is also is responsible for scheduling the process-
ing firings in a way that avoids firing a processing with not
enough data in its input ports or not enough space into its
output ports. Minimizing latency and securing performance
conditions that guarantee correct output (avoiding underruns
or deadlocks, for instance) are other responsibilities of the
FlowControl.

2.1.1 Life-cycle and configurations

A 4-MPS processing object has an explicit lifecycle made of
the following states: unconfigured, ready, and running. The
processing object can receive controls and data only when
running. Before getting to that state though, it needs to go
through the ready having received a valid configuration.

Configurations are another kind of parameters that can be
input to processing objects and that, unlike controls, produce
expensive or structural changes in the processing object. For
instance, a configuration parameter may include the num-
ber of ports that a processing will have or the numbers of
tokens that will be produced in each firing. Therefore, and as
opposed to controls that can be received at any time, config-
urations can only be set into a processing object when this is
not in running state.

2.1.2 Static versus dynamic processing compositions

When working with large systems we need to be able to
group a number of independent processing objects into a
larger functional unit that may be treated as a new process-
ing object in itself.

This process, known as composition, can be done in two
different ways: statically at compile time, and dynamically

at run time (see [17]). Static compositions in the 4 MPS
metamodel are called processing composites while dynamic
compositions are called networks.

Choosing between processing composites and networks
is a trade-off between efficiency versus understandability
and flexibility. In processing composites the developer is in
charge of deciding the behavior of the objects at compile time
and can therefore fine-tune their efficiency. On the other hand,
networks offer an automatic flow and data management that
is much more convenient but might result in reduced effi-
ciency in some particular cases.

2.1.3 Processing networks

Nevertheless processing networks in 4MPS are in fact much
more than a composition strategy. The network metaclass
acts as the glue that holds the metamodel together. Figure 4
depicts a simplified diagram of the main 4MPS metaclasses.

Networks offer an interface to instantiate new processing
objects given a string with its class name using a processing
object factory and a plug-in loader. They also offer interface
for connecting the processing objects and, most important,
they automatically control their firing.

This firing scheduling can follow different strategies by
either having a static scheduling decided before hand or
implementing a dynamic scheduling policy such as a push
strategy starting firing the up-source processings, or a pull
strategy where we start querying for data to the most down-
stream processings. As a matter of fact, these different strat-
egies depend on the topology of the network and can be
directly related to the different scheduling algorithms avail-
able for dataflow networks and similar graphical models
of computation (see [37] for an in-depth discussion of this
topic). In any case, to accommodate all this variability the
metamodel provides for different FlowControl sub-classes
which are in charge of the firing strategy, and are pluggable
to the network processing container.

2.2 Towards a pattern language for dataflow architectures

As explained in the previous section, the general 4 MPS meta-
model can be interpreted as a particular case of a Dataflow
Network. Furthermore, when reviewing many frameworks
and environments related to CLAM (see Sect. 5) we also
uncovered that most of these frameworks end up offering a
variation of dataflow networks.

While 4 MPS offers a valid high-level metamodel for most
of these environments it is sometimes more useful to present
a lower-level architecture in the language of design patterns,
where recurring and non-obvious design solutions can be
shared. Thus, such pattern language bridges the gap between
an abstract metamodel such as 4 MPS and the concrete imple-
mentation given a set of constraints.

123

A framework for development of cross-platform audio application 19

Fig. 4 Participant classes in a 4-MPS network. Note that a 4-MPS network is a dynamic run-time composition of processing objects that contains
not only processing instances but also a list of connected ports and controls and a flow control

Patterns provide a convenient way to formalize and reuse
design experience. However, neither dataflow systems nor
other audio-related areas have yet received many attention
on domain-specific patterns. The only previous efforts in the
audio domain that we are aware of are several music infor-
mation retrieval patterns [11] and a catalog with six real-time
audio patterns presented in a workshop [55]. In the general
multimedia field there are some related pattern languages like
[33] but these few examples have a narrower scope than the
one here presented.

There have been previous efforts in building pattern lan-
guages for the dataflow paradigm, most noticeably the one
by Manolescu [34]. However, the pattern language here pre-
sented is different because it takes our experience building
generic audio frameworks and models [3,54] and maps them
to traditional graphical models of computation. The cata-
log is already useful for building systems in the multimedia
domain and aims at growing (incorporating more patterns)
into a more complete design pattern language of that domain.

In the following, we offer a brief summary of a complete
pattern language for dataflow architecture in the multimedia
domain presented in [10]. As an example we also include
the more detailed description of two of the most important
patterns in the catalog.

All the patterns presented in this catalog fit within the
generic architectural pattern defined by Manolescu as the
dataflow architecture pattern. However, this architectural
pattern does not address problems related to relevant aspects

such as message passing protocol, processing objects execu-
tion scheduling or data tokens management. These and other
aspects are addressed in our pattern language, which contains
the following patterns classified in three main categories:

– General dataflow patterns address problems of how to
organize high-level aspects of the dataflow architecture,
by having different types of module connections.
Semantic ports addresses distinct management of
tokens by semantic; driver ports addresses how to make
modules executions independently of the availability of
certain kind of tokens; stream and event ports add-
resses how to synchronize different streams and events
arriving to a module; and, finally, typed connections
addresses how to deal with typed tokens while allow-
ing the network connection maker to ignore the concrete
types.

– Flow implementation patterns address how to physically
transfer tokens from one module to another, according
to the types of flow defined by the general dataflow
patterns. Tokens life-cycle, ownership and memory
management are recurrent issues in those patterns. Cas-
cading event ports addresses the problem of having a
high-priority event-driven flow able to propagate through
the network. Multi-rate stream ports addresses how
stream ports can consume and produce at different rates;
multiple window circular buffer addresses how a writer
and multiple readers can share the same tokens buffer.

123

20 X. Amatriain et al.

and phantom buffer addresses how to design a data
structure both with the benefits of a circular buffer and
the guarantee of window contiguity.

– Network usability patterns address how humans can inter-
act with dataflow networks. Recursive networks makes
it feasible for humans to deal with the definition of large
complex networks; and port monitor addresses how to
monitor a flow from a different thread without compro-
mising the network processing efficiency.

Two of these patterns, typed connections and port mon-
itor, are very central to CLAM since they enable its rapid
prototyping features that will be reviewed at 4, and so, we
provide here a summarized version of these patterns. Com-
plete versions of these and the rest of the patterns in the
catalog can be found in [10].

2.3 Pattern: Typed connections

Context: Most multimedia data-flow systems must manage
different kinds of tokens. In the audio domain, we might need
to deal with audio buffers, spectra, spectral peaks, MFCC’s,
MIDI, etc. And you may not even want to limit the sup-
ported types. The same applies to events (control) channels,
we could limit them to floating point types but we may use
structured events controls like the ones in OSC [53].

Heterogeneous data could be handled in a generic way
(common abstract class, void pointers, etc.) but this adds a
dynamic type handling overhead to modules. Module pro-
grammers should have to deal with this complexity and this
is not desirable. It is better to directly provide them the
proper token type. Besides that, coupling the communication
channel between modules with the actual token type is good
because this eases the channel internal buffers management.

But using typed connections may imply that the entity
that handles the connections should deal with all the possi-
ble types. This could imply, at least, that the connection entity
would have a maintainability problem. And it could even be
unfeasible to manage when the set of those token types is
not known at compilation time, but at run-time, for example,
when we use plugins.

Problem: Connectible entities communicate typed tokens
but token types are not limited. Thus, how can a connection
maker do typed connections without knowing the types?

Forces

– Process is cost-sensitive and should avoid dynamic type
checking and handling.

– Connections are done in run-time by the user, so mis-
matches in the token type should be handled.

– Dynamic type handling is a complex and error prone
programming task, thus, placing it on the connection

Fig. 5 Class diagram of a canonical solution of typed connections

infrastructure is preferable than placing it on concrete
modules implementation.

– Token buffering among modules can be implemented in a
wiser, more efficient way by knowing the concrete token
type rather than just knowing an abstract base class.

– The collection of token types evolves and grows and this
should not affect the infrastructure.

– A connection maker coupled to the evolving set of types
is a maintenance workhorse.

– A type could be added in run time.

Solution: Split complementary ports interfaces into an
abstract level, which is independent of the token-type, and a
derived level that is coupled to the token type. Let the con-
nection maker set the connections thorough the generic inter-
face, while the connected entities use the token-type coupled
interface to communicate each other. Access typed tokens
from the concrete module implementations using the typed
interface.

The class diagram for this solution is shown in Fig. 5.
Use run-time type checks when modules get connected

(binding time) to get sure that connected ports types are com-
patible, and, once they are correctly connected (processing
time), rely just on compile-time type checks.

To do that, the generic connection method on the abstract
interface (bind) should delegate the dynamic type check-
ing to abstract methods (isCompatible,typeId) imple-
mented on token-type coupled classes.

Consequences: The solution implies that the connection
maker is not coupled to token types. Just concrete modules
are coupled to the token types they use.

Type safety is ensured by checking the dynamic type on
binding time and relying on compile time type checks during
processing time. So this is both efficient and safe.

Because both sides on the connection know the token type,
buffering structures can deal with tokens in a wiser way when
doing allocations, initializations, copies, etc.

123

A framework for development of cross-platform audio application 21

Concrete modules just access to the static typed tokens.
So, no dynamic-type handling is needed.

Besides the static type, connection checking gives the abil-
ity to do extra checks on the connecting entities by accessing
semantic type information. For example, implementations of
the bind method could check that the size and scale of audio
spectra match.

2.4 Pattern: Port monitors

Context Some multimedia applications need to show a
graphical representation of tokens that are being produced
by some module out-port. While the visualization needs just
to be fluid, the process has real-time requirements. This nor-
mally requires splitting visualization and processing into dif-
ferent threads, where the processing thread is scheduled as a
high-priority thread. But because the non real-time monitor-
ing must access to the processing thread tokens some con-
currency handling is needed and this often implies locking
in the two threads.

Problem: We need to graphically monitor tokens being
processed. How to do it without locking the real-time pro-
cessing while keeping the visualization fluid?

Forces

– The processing has real-time requirements (i.e. The
process result must be calculated in a given time slot)

– Visualizations must be fluid; that means that it should
visualize on time and often but it may skip tokens

– The processing is not filling all the computation time

Solution: The solution is to encapsulate concurrency in a
special kind of process module, the port monitor, that is con-
nected to the monitored out-port. Port monitors offers the
visualization thread an special interface to access tokens in a
thread safe way. Internally, they have a lock-free data struc-
ture which can be simpler than a lock-free circular buffer
since the visualization can skip tokens.

To manage the concurrency avoiding the processing to
stall, the port monitor uses two alternated buffers to copy
tokens. In a given time, one of them is the writing one and
the other is the reading one. The port monitor state includes
a flag that indicates which buffer is the writing one. The Port
monitor execution starts by switching the writing buffer and
copying the current token there. Any access from the visual-
ization thread locks the buffer switching flag. Port execution
uses a try lock to switch the buffer, so, the process thread is
not being blocked, it is just writing on the same buffer while
the visualization holds the lock (Fig. 6).

Fig. 6 A port monitor with its switching two buffers

Consequences: Applying this pattern we minimize the
blocking effect of concurrent access on two fronts. On one
side, the processing thread never blocks. On the other, the
blocking time of the visualization thread is very reduced, as
it only lasts a single flag switching.

In any case, the visualization thread may suffer starvation
risk. Not because the visualization thread will be blocked but
because it may be reading always from the same buffer. That
may happen if every time the processing thread tries to switch
the buffers, the visualization is blocking. Experience tell us
that this effect is not critical and can be avoided by minimiz-
ing the time the visualization thread is accessing tokens, for
example, by copying them and release.

2.5 Patterns as a language

Some of the patterns in the catalog are very high-level, such
as semantic ports and driver ports, while other are much
focused on implementation issues, like phantom buffer).
Although the catalog is not domain complete, it could be con-
sidered a pattern language because each pattern references
higher-level patterns describing the context in which it can be
applied, and lower-level patterns that could be used after the
current one to further refine the solution. These relations form
a hierarchical structure drawn in Fig. 7. The arcs between pat-
terns mean “enables” relations: introducing a pattern in the
system enables other patterns to be used.

The catalog shows how to approach the development of a
complete dataflow system in an evolutionary fashion without
the need to do big up-front design. The patterns at the top of
the hierarchy suggest to start with high level decisions, driven
by questions like: “do all ports drive the module execution?”
And “does the system have to deal only with stream flow
or also with event flow?” Then move on to address issues
related to different token types such as: “do ports need to be
strongly typed while connectible by the user?”, or “do the
stream ports need to consume and produce different block
sizes?”, and so on. On each decision, which will introduce
more features and complexity, a recurrent problem is faced
and addressed by one pattern in the language.

123

22 X. Amatriain et al.

Semantic Ports

Driver Ports Stream and Event Ports

Typed Connections

Cascading Event Ports
Multi-rate Stream Ports

Multiple Window Circular Buffer

Phantom Buffer

Recursive Networks
Port Monitor

A B A enables B

A B A uses B

General Data-flow Patterns

Flow Implementation Patterns

Network Usability Patterns

Data-flow Architecture

Fig. 7 The multimedia dataflow pattern language. High-level patterns
are on the top and the arrows represent the order in which design prob-
lems are being addressed by developers

The above patterns are inspired by our experience in the
audio domain. Nevertheless, we believe that those have an
immediate applicability in the more general multimedia
domain.

As a matter of fact, all patterns in the “general dataflow
patterns” category can be used on any other dataflow domain.
Typed connections, multiple window circular buffer and
phantom buffer have applicability beyond dataflow sys-
tems. And, regarding the port monitor pattern, although its
description is coupled with the dataflow architecture, it can be
extrapolated to other environments where a normal priority
thread is monitoring changing data on a real-time one.

Most of the patterns in this catalog can be found in many
audio systems. However, examples of a few others (namely,
multi-rate stream ports, multiple window circular buffer
and phantom buffer) are hard to find outside of CLAM
so they should be considered innovative patterns (or proto-
patterns).

3 CLAM components

As seen in Fig. 8 CLAM offers a processing kernel that
includes an infrastructure and processing and data reposito-
ries. In that sense, CLAM is both a black-box and a white-
box framework [42]. It is black-box because already built-in

components included in the repositories can be connected
with minimum or no programmer effort in order to build
new applications. And it is white-box because the abstract
classes that make up the infrastructure can be easily derived
to extend the framework components with new processes or
data classes.

Apart from the kernel, CLAM includes a number of tools
for services such as audio input/output or XML serialization
and a number of applications that have served as a testbed
and validation of the framework.

In the following, we will review the CLAM infrastructure,
repositories, and its tools.

3.1 The infrastructure

The CLAM infrastructure is a direct implementation of the
4 MPS metamodel, which has already been explained in
Sect. 2.1.

Indeed, the metaclasses illustrated in Fig. 4 are directly
mapped to C++ abstract classes in the framework (note
that C++ does not accept metaclasses naturally). These
metaclasses are responsible for the white-box or extensible
behavior in the framework. When a user wants to add a new
processing or data to the repository a new concrete class
needs to be derived from these classes.

3.2 The repositories

The processing repository contains a large set of ready-to-use
processing algorithms, and the data repository contains all
the classes that act as data containers to be input or output to
the processing algorithms.

The processing repository includes around 150 different
processing classes, classified in categories such as Analysis,
ArithmeticOperators, or AudioFileIO.

Although the repository has a strong bias toward spectral-
domain processing because of our research group’s back-
ground and interests, there are enough encapsulated
algorithms and tools so as to cover a broad range of pos-
sible applications.

On the other hand, in the data repository we offer the
encapsulated versions of the most commonly used data types
such as audio, spectrum, or segment. It is interesting to note
that all of these classes make use of the data infrastructure and
are therefore able to offer services such as a homogeneous
interface or built-in automatic XML persistence.

3.3 Tools

Apart from the infrastructure and the repositories, which
together make up the CLAM processing kernel CLAM also
includes a large number of tools that can be necessary to build
an audio application.

123

A framework for development of cross-platform audio application 23

Fig. 8 CLAM components.
The CLAM framework is made
up of a processing kernel and
some tools. The processing
kernel includes an Infrastructure
that is responsible for the
framework white-box behavior
and repositories that offer the
black boxes. Tools are usually
wrappers around pre-existing
third party libraries. A user
application can make use of any
or all of these components

Tools

Platform Abstraction

Devices

Processing Kernel

Infrastructure

Repository

Processing
Infrastructure

Data
Infrastructure

Processing
Repository

Processing Data
Repository

Network
Infrastructure

SerializationVisualization

Application
Skeletons

Multi-
threading

Audio
Devices

Midi
Devices

Files
Devices

Model
Abstraction

Toolkit-dependent
implementations

 XML

User
Application

All these tools are possible, thanks to the integration of
third party open libraries into the framework. Services offered
by these libraries are wrapped and integrated into the meta-
model so they can be used as natural constructs (mostly pro-
cessing objects) from within CLAM. In this sense, one of the
benefits of using CLAM is that it acts as a common point for
already existing heterogeneous services [4].

3.3.1 XML

XML is used throughout CLAM as a general purpose storage
format in order to store objects that contain data, descriptors
or configurations [23]. In CLAM a spectrum as well as a net-
work configuration can be transparently stored in XML. This
provides for seamless interoperability between applications
allowing easy built-in data exchange.

3.3.2 GUI

Just as many frameworks, CLAM had to think about ways of
integrating the core of the framework tools with a graphical
user interface that may be used as a front-end to the frame-
work functionalities. In CLAM this is accomplished through
the visualization module, which includes many already
implemented widgets offered for the Qt framework. The
more prominent example of such utilities are the port mon-
itors: Widgets that can be connected to ports of a CLAM
network to show its flowing data. A similar tool called plots is
also available for debugging data while implementing
algorithms.

3.3.3 Platform abstraction

Under this category, we include all those CLAM tools that
encapsulate system-level functionalities and allow a CLAM
user to access them transparently from the operating system
or platform.

Using these tools a number of services, such as audio
input/output, audio file formats, MIDI input/output, or SDIF
file support, can be added to an application and then used on
different operating systems with exactly the same code and
always in observing the 4MPS metamodel.

3.4 CLAM applications

The framework has been tested on —but also its develop-
ment has been driven by —a number of applications. Many
of these applications were used in the beginning to set the
domain requirements and they now illustrate the feasibility
of the metamodel, the design patterns and the benefits of the
framework. In the following, we will present some of these
applications.

3.4.1 Spectral modeling analysis/synthesis

One of the main objectives when starting CLAM was to
develop a replacement for a similar pre-existing tool.

This application (see GUI in Fig. 9) is used to analyze,
transform and synthesize back a given sound. For doing so,
it uses the sinusoidal plus residual model [7]. The application

123

24 X. Amatriain et al.

Fig. 9 The SpectralTools graphical user interface. This application can be used not only to inspect and analyze audio files but also to transform
them in the spectral domain

Fig. 10 Editing low-level descriptors and segments with the CLAM annotator. This tool provides ready-to-use descriptors such as chord extraction
and can also be used to launch custom algorithms

reads an XML configuration file, and an audio file (or a
previously analyzed SDIF file). The input sound is analyzed,
transformed in the spectral domain according to a transfor-
mation score and then synthesized back.

3.4.2 The annotator

The CLAM Annotator [9] is a tool for inspecting and edit-
ing audio descriptors (see Fig. 10). The application can be

123

A framework for development of cross-platform audio application 25

used as a platform for launching custom extraction algorithms
that analyze the signal and produce different kinds of descrip-
tors. It provides tools for merging and filtering different
source of descriptors that can be custom extractor programs
or even remote sources from web services.

Descriptors can be organized at different levels of abstrac-
tion: song level, frame level, but also several segmentations
with different semantics and attributes. The descriptors can
be synchronously displayed or auralized to check their cor-
rectness. Merging different extractors and hand-edited
ground truth has been proved very useful to evaluate extrac-
tors’ performance.

3.4.3 Others

Many other sample usages of CLAM exist apart from the
main applications included in the repository and described
above.

For instance, SALTO is a software-based synthesizer [25]
that implements a general synthesis architecture configured
to produce high quality sax and trumpet sounds. Spectral-
Delay, also known as CLAM’s Dummy Test, was the first
application implemented in the framework. It was chosen to
drive the design in its first stages. The application implements
a delay in the spectral domain: the input audio signal can be
divided with CLAM into three bands and each of these bands
can be delayed separately.

The repository also includes many smaller examples that
illustrate how the framework can be used to do particular
tasks ranging from a simple sound file playback to a com-
plex MPEG7 descriptor analysis.

Finally, other CLAM applications are not included in the
repository for a variety of reasons, namely:

– The application has not reached a stable enough status.
This is the case for many student projects that although
interesting are not mature enough to be in the main repos-
itory. CLAM has been used to create a guitar effect that
uses neural networks to learn its sound, a real-time fin-
gerprint algorithm or a networked and distributed audio
application.

– The application is mostly done with an artistic goal and
therefore not very general purpose. For instance, Rappid
[43] was a testing workbench for the CLAM framework
in high demanding situations. Rappid implemented a sim-
ple time-domain amplitude modulation algorithm but any
other CLAM based algorithm can be used in its place.
Rappid was tested in a live-concert situation when it was
used as an essential part of a composition for harp, viola
and tape, presented at the Multiphonies 2002 cycle of
concerts in Paris.

– It is a third-party application. Applications such as an
Italian speech synthesizer have been developed by third
parties and therefore not integrated into the repository.

– The application is protected by a non-disclosure agree-
ment. Because CLAM has a double-licensing scheme, it
can also be used in proprietary software.

4 CLAM as a rapid prototyping environment

So far we have seen that CLAM can be used as a regular appli-
cation framework by accessing the source code. Furthermore,
ready-to-use applications such as the ones presented in the
previous section provide off-the-self functionality.

But latest developments have brought visual building
capabilities into the framework. These allow the user to con-
centrate on the research algorithms and not on application
development. Visual building is also valuable for rapid pro-
totyping of applications and plug-ins.

CLAM’s visual builder is known as the NetworkEditor
(see Fig. 11). It allows to generate an application —or only
its processing engine— by graphically connecting objects
in a patch. Another application called prototyper acts as the
glue between a graphical GUI designing tool (such as Qt
Designer) and the processing engine defined with the Net-
workEditor.

Having a proper development environment is something
that may increase development productivity. Development
frameworks offer system models that enable system develop-
ment dealing with concepts of the target domain. Eventually,
they provide visual building tools that also improve produc-
tivity [24]. In the audio and music domain, the approach
of modeling systems using visual dataflow tools has been
widely and successfully used in system such as PD [40],
Marsyas [46], and Open Sound World [14]. But, such envi-
ronments are used to build just processing algorithms, not full
applications ready for the public. A full application would
need further development work addressing the user interface
and the application workflow.

User interface design is supported by existing toolboxes
and visual prototyping tools. Examples of such environments
which are freely available are Qt Designer, FLTK Fluid or
GTK’s Glade. But such tools just solve the composition of
graphical components into a layout, offering limited reacti-
vity. They still do not address a lot of low level programming
that is needed to solve the typical problems that an audio
application has. Those problems are mostly related to the
communication between the processing core and the user
interface.

This section describes an architecture that addresses this
gap and enables fully visual building of real-time audio

123

26 X. Amatriain et al.

Fig. 11 NetworkEditor is the visual builder of the CLAM framework. It can be used not only as an interactive multimedia dataflow application
but also to build networks that can be run as stand-alone applications embedded in other applications and plugins

processing applications by combining visual dataflow tools
and visual GUI design tools.

4.1 Target applications

The set of applications the architecture is able to visually
build includes real-time audio processing applications such
as synthesizers, real-time music analyzers and audio effects
and plugins (Fig. 12).

The only limitation imposed on the target applications is
that their logic should be limited to just starting and stop-
ping the processing algorithm, configuring it, connecting it
to the system streams (audio from devices, audio servers,
plugin hosts, MIDI, files, OSC, etc.), visualizing the inner
data and controlling some algorithm parameters while run-
ning. Note that these limitations are very much related to the
explicit life-cycle of a 4MPS Processing object outlined in
Sect. 2.1.1.

Given those limitations, the defined architecture does not
claim to visually build every kind of audio application. For
example, audio authoring tools, which have a more com-
plex application logic, would be out of the scope, although

Fig. 12 An example of a rapid-prototyped audio effect application:
Pitch transposition. This application, which can be prototyped in CLAM
in a matter of minutes, performs an spectral analysis, transforms the
audio in the spectral domain, and synthesizes back the result. Note
how, apart from representing different signal components, three sliders
control the process interacting directly with the underlying processing
engine

123

A framework for development of cross-platform audio application 27

Widgets
plugins

Processing modules
plugins

Data-flow editor
(CLAM NetworkEditor)

UI editor
(Qt Designer)Data-flow builder UI builder

Runner

JACK
b/e

LADSPA
b/e

VST
b/e

Portaudio
b/e

 Back-end

Binder

Processing modules
plugins

Widgets
plugins

XML XML

...

Run-time engine

Fig. 13 Visual prototyping architecture. The CLAM components that enable the user to visually build applications

Fig. 14 Qt Designer tool editing the interface of an audio application

the architecture would help to build important parts of such
applications.

The architecture provides the following features:

– Communication of any kind of data and control objects
between GUI and processing core (not just audio buffers).

– The prototype can be embedded in a wider application
with a minimal effort.

– Plugin extensibility for processing units, for graphical
elements which provide data visualization and control
sending, and for system connectivity back-ends (JACK,
ALSA, PORTAUDIO, LADSPA, VST, AudioUnit, etc.)

4.2 Main architecture

The proposed architecture (Fig. 13) has three main compo-
nents: A visual tool to define the audio processing core, a

visual tool to define the user interface and a third element, the
run-time engine, that dynamically builds definitions coming
from both tools, relates them and manages the application
logic. We implemented this architecture using some exist-
ing tools. We are using CLAM NetworkEditor as the audio
processing visual builder, and Trolltech’s Qt Designer as the
user interface definition tool. Both Qt Designer and CLAM
NetworkEditor provide similar capabilities in each domain,
user interface and audio processing, which are later exploited
by the run-time engine.

Qt Designer can be used to define user interfaces by com-
bining several widgets. The set of widget is not limited;
developers may define new ones that can be added to the
visual tool as plugins. Figure 14 shows a Qt Designer session
designing the interface for an audio application, which uses
some CLAM data objects related widgets provided by CLAM
as a Qt widgets plugin. Note that other CLAM data related

123

28 X. Amatriain et al.

widgets are available on the left panel list. For example to
view spectral peaks, tonal descriptors or spectra.

Interface definitions are stored as XML files with the “.ui”
extension. Ui files can be rendered as source code or directly
loaded by the application at run-time. Applications may, also,
discover the structure of a run-time instantiated user interface
by using introspection capabilities.

Analogously, CLAM Network Editor allows to visually
combine several processing modules into a processing net-
work definition. The set of processing modules in the CLAM
framework is also extensible with plugin libraries. Process-
ing network definitions can be stored as XML files that can
be loaded later by applications in run-time. And, finally the
CLAM framework also provides introspection so a loader
application may discover the structure of a run-time loaded
network.

4.3 Run-time engine

If only a dataflow visual tool and a visual interface designer
was provided, some programming would still be required to
glue it all together and launch the application. The purpose of
the run-time engine, which is called prototyper in our imple-
mentation, is to automatically provide this glue. Next, we
enumerate the problems that the run-time engine faces and
how it solves them.

4.3.1 Dynamic building

Both component structures, the audio processing network
and the user interface, have to be built up dynamically in
run-time from an XML definition. The complexity to be
addressed is how to do such task when the elements of such
structure are not known before hand because they are defined
by add-on plugins. 3

Both CLAM and Qt frameworks provide object factories
that can build objects given a type identifier. Because we
want interface and processing components to be expandable,
factories should be able to incorporate new objects defined
by plugin libraries. To enable the creation of a certain type
of object, the class provider must register a creator on the
factory at plugin initialization.

In order to build up the components into an structure, both
frameworks provide means for reflection so the builder can
discover the properties and structure of unknown objects. For
instance, in the case of processing elements, the builder can
browse the ports, the controls, and the configuration parame-
ters using a generic interface, and it can guess the type com-
patibility of a given pair of ports or controls.

3 Note that this is a recurring issue in audio applications where the use
of plug-ins is common practice.

4.3.2 Relating processing and user interface

The run-time engine must relate components of both struc-
tures. For example, the spectrum view on the Transposition
application (second panel on Fig. 12) needs to periodically
access spectrum data flowing by a given port of the process-
ing network. The run-time engine first has to identify which
components, are connected. Then decide whether the connec-
tion is feasible. For example, spectrum data cannot be viewed
by an spectral peaks view. And then, perform the connection,
all that without the run-time engine knowing anything about
spectra and spectral peaks.

The proposed architecture uses properties such the com-
ponent name to relate components on each side. Then compo-
nents are located by using introspection capabilities on each
side framework.

Once located, the run-time engine must assure that the
components are compatible and connect them. The run-time
engine is not aware of the types of data that connected objects
will handle, we deal that by applying the typed connec-
tions design pattern mentioned in Sect. 2.2. In a nutshell,
this design pattern allows to establish a type dependent con-
nection construct between two components without the con-
nector maker knowing the types and still be type safe. This is
done by dynamically check the handled type on connection
time, and once the type is checked both sides are connected
using statically type checked mechanisms which will do opti-
mal communication on run-time.

4.3.3 Thread safe communication in real-time

One of the main issues that typically need extra effort while
programming is multi-threading. In real-time audio appli-
cations based on a data flow graph, the processing core is
executed in a high priority thread while the rest of the appli-
cation is executed in a normal priority one following the
out-of-band and in-band partition pattern [34]. Being in
different threads, safe communication is needed, but tradi-
tional mechanisms for concurrent access are blocking and
the processing thread can not be blocked. Thus, new solu-
tions, as the one proposed by the port monitor pattern in
Sect. 2.2, are needed.

A port monitor is a special kind of processing component
which does double buffering of an input data and offers a
thread safe data source interface for the visualization wid-
gets. A flag tells which is the read and the write buffer. The
processing thread does a try lock to switch the writing buffer.
The visualization thread will block the flag when access-
ing the data but as the processing thread just does a ‘try
lock’, so it will just overwrite the same buffer but it won’t
block fulfilling the real-time requirements of the processing
thread.

123

A framework for development of cross-platform audio application 29

4.3.4 System back-end

Most of the application logic is coupled to sinks and sources
for audio data and control events. Audio sources and sinks
depend on the context of the application: JACK, ALSA,
ASIO, DirectSound, VST, LADSPA, and so on. So the way
of dealing with threading, callbacks, and assigning input and
outputs is different in each case. The architectural solution
for that has been providing back-end plugins to deal with this
issues.

Back-end plugins address the often complex back-end
setup, relate and feed sources and sinks in a network with
real system sources and sinks, control processing thread and
provide any required callback. Such plugins, hide all that
complexity with a simple interface with operations such as
setting up the back-end, binding a network, start and stop the
processing, and release the back-end.

The back-end also transcends to the user interface as some-
times the application may let the user to choose the concrete
audio sink or source, and even choose the audio back-end.
Back-end plugin system also provides interface to cover such
functionality.

5 The big picture

This article would be incomplete without at least a short
overview of existing environments that somehow share objec-
tives or constructs with CLAM. In the following we will out-
line similar frameworks and tools and highlight what makes
CLAM unique.

5.1 A (very brief) survey of existing audio environments

In this section, we will give a brief survey of existing frame-
works and environments for audio processing. Although,
because of space constraints, the survey is not much more
than an ordered list, we believe that it is already valuable to
have all these references listed in such a way. Most of these
environments are extensively reviewed in [3].

The current arena presents heterogeneous collections of
systems that range from simple libraries to full-fledged
frameworks.4 Unfortunately, it is very difficult to have a com-
plete picture of the existing environments in order to choose
one or decide designing a new one.

In order to contextualize our survey and because the 4 MPS
metamodel is valid for any kind of multimedia processing

4 Note that throughout the article we are adhering to the most com-
monly accepted definition in which a framework is defined as “a set
of classes that embodies an abstract design for solutions to a family of
problems” [28], we will use the term environment otherwise.

system, it is best to first start with a list of relevant environ-
ments not only for audio but also for image and multimedia:

– Multimedia Processing Environments: Ptolemy [27],
BCMT [35], MET++ [1], MFSM [20], VuSystem [31],
Javelina [26], VDSP [36]

– (Mainly) Audio Processing Environments: CLAM [6],
The Create Signal Library (CSL) [39], Marsyas [45], STK
[16], Open Sound World (OSW) [14], Aura[18], SndObj
[29], FORMES [15], Siren [38], Kyma [44], Max [41],
PD[40]

– (Mainly) Visual Processing Environments: Khoros-
Cantata [56] (now VisiQuest), TiViPE [32], NeatVision
[51], AVS [47], FSF [21]

If we now focus in the audio field, we can further classify
the environments according to their scope and main purpose
as follows:

1. Audio processing frameworks: software frameworks that
offer tools and practices that are particularized to the
audio domain.

(a) Analysis oriented: Audio processing frameworks
that focus on the extraction of data and descriptors
from an input signal. Marsyas by Tzanetakis [45] is
probably the most important framework in this sub-
category as it has been used extensively in several
music information retrieval systems [45].

(b) Synthesis oriented: Audio processing frameworks
that focus on generating output audio from input
control signals or scores. STK by Cook [16] has
already been in use for more than a decade and it is
fairly complete and stable.

(c) General purpose: These audio processing frame-
works offer tools both for analysis and synthesis.
Out of the ones in this sub-category both SndObj
[29] and CSL [39] are in a similar position, hav-
ing in any case some advantages and disadvantages.
CLAM, the framework developed presented in this
article, should be included in this sub-category.

2. Music processing frameworks: These are software
frameworks that instead of focusing on signal-level pro-
cessing applications they focus more on the manipulation
of symbolic data related to music. Siren [38] is probably
the most prominent example in this category.

3. Audio and music visual languages and applications:
Some environments base most of their tools around a
graphical metaphor that they offer as an interface with
the end user. In this section, we include important exam-
ples such as the Max [41] family or Kyma [44].

4. Music languages: In this category we find different lan-
guages that can be used to express musical information

123

30 X. Amatriain et al.

(note that we have excluded those having a graphical met-
aphor, which are already in the previous one). Although
several models of languages co-exist in this category, it is
the Music-N family of languages the most important one.
Music-N languages languages are based their proposal
on the separation of musical information into statical
information about instruments and dynamic information
about the score, understanding this score as a sequence
of time-ordered note events. Music-N languages are also
based on the concept of unit generator. The most impor-
tant language in this category, because of its acceptance,
use and importance, is Csound [49].

5.2 CLAM in the big picture

Although as shown earlier, many other related environments
exist there are some important features of our framework that
are worth pointing out and make it somehow different5 (see
[3] for an extensive study and comparison of most of them):

1. All the code is object-oriented and written in C++ for
efficiency. Although the choice of a specific program-
ming language is no guarantee of any style at all, we have
tried to follow solid design principles like design patterns
[22] and C++ idioms [2], good development practices
like test-driven development [12] and refactoring [19],
as well as constant peer reviewing.

2. It is efficient because the design decisions concerning the
generic infrastructure have been taken to favor efficiency
(i.e. inline code compilation, no virtual methods calls in
the core process tasks, avoidance of unnecessary copies
of data objects, etc.).

3. It is comprehensive since it not only includes classes for
processing (i.e. analysis, synthesis, transformation) but
also for audio and MIDI input/output, XML and SDIF
serialization services, algorithms, data visualization and
interaction, and multi-threading.

4. It integrates a large number of already existing third party
tools under a common metamodel.

5. It deals with wide variety of extensible data types that
range from low-level signals (such as audio or spectrum)
to higher-level semantic-structures (a musical phrase or
an audio segment).

6. It is cross-platform.
7. The framework can be used either as a regular C++

library or as a visual prototyping tool.
8. It has been formalized through a metamodel and a pat-

tern language so the lessons learned can be used beyond
CLAM.

5 Note that most of these features can be individually traced in many
other environments. It is the inclusion of all of them what makes CLAM
unique.

6 Conclusions

CLAM already has a long life as it has been developed for
the past 6 years. During this period of time, and even before
reaching its first stable release, the framework has proved
useful in many applications and scenarios.

In this article, we have presented a thorough review of
CLAM features as in its 1.0 release. We have focused espe-
cially on the latest developments, which drive the framework
in a more black-box direction by presenting a rapid-prototyp-
ing visual builder that allows to build efficient stand-alone
applications and plugins.

And although CLAM is valuable in itself, as an exam-
ple of a well-designed multimedia application framework,
we have also shown why many of its constructs and design
decisions can be shared beyond the framework itself. In the
4 MPS metamodel we offer a domain-specific language that
is shared by many multimedia processing applications and
in the dataflow pattern language we detail more fine grain
constructs that are also found in many environments.

Acknowledgments The CLAM framework has been developed at the
Universitat Pompeu Fabra thanks to the contribution of many devel-
opers and researchers. A non-exhaustive list of contributors should at
least include Maarten de Boer, Miguel Ramírez, Xavi Rubio, Ismael
Mosquera, Xavier Oliver, Enrique Robledo, and our students from the
Google Summer of Code.

References

1. Ackermann, P.: Direct manipulation of temporal structures in a
multimedia application framework. In: Proceedings of the 1994
ACM Multimedia Conference, 1994

2. Alexandrescu, A.: Modern C++ design. Addison–Wesley, Pearson
Education, New York (2001)

3. Amatriain, X.: An object-oriented metamodel for digital signal
processing with a focus on audio and music. PhD thesis, Univer-
sitat Pompeu Fabra, Barcelona, Spain, 2004

4. Amatriain, X.: Clam: a framework for audio and music application
development. IEEE Softw. 24(1), 82–85 (2007)

5. Amatriain, X.: A domain-specific metamodel for multimedia pro-
cessing systems. IEEE Trans. Multimed. 9(6), 1284–1298 (2007)

6. Amatriain, X., Arumi, P.: Developing cross-platform audio and
music applications with the CLAM Framework. In: Proceedings
of International Computer Music Conference, 2005

7. Amatriain, X., Bonada, J., Loscos, A., Serra, X.: DAFX: Digi-
tal Audio Effects (Udo Z+áalzer ed.), chapter Spectral Process-
ing. pp. 373–438. Wiley, New York (2002)

8. Amatriain, X., de Boer, M., Robledo, E., Garcia, D.: CLAM:
an OO framework for developing audio and music applications.
In: Proceedings of the 2002 Conference on Object Oriented Pro-
gramming, Systems and Application (OOPSLA 2002)(Companion
Material), Seattle, USA. ACM, New York (2002)

9. Amatriain, X., Massaguer, J., Garcia, D., Mosquera, I.: The clam
annotator: a cross-platform audio descriptors editing tool. In: Pro-
ceedings of the 2005 International Symposium on Music Informa-
tion Retrieval, ISMIR ’05, 2005

123

A framework for development of cross-platform audio application 31

10. Arumi, P., Garcia, D., Amatriain, X.: A dataflow pattern language
for sound and music computing. In: Proceedings of Pattern Lan-
guages of Programming (PloP 06), 2006

11. Aucouturier, J.: Ten experiments on the modelling of polyphonic
timbre. PhD thesis, University of Paris 6/Sony CSL Paris, 2006

12. Beck, K.: Test Driven Development by Example. Addison–
Wesley, New York (2000)

13. Burbeck, S.: Application programming in smalltalk-80: how to
use model-view-controller (mvc). Technical report, Xerox PARC,
1987

14. Chaudhary, A., Freed, A., Wright, M.: An open architecture for
real-time audio processing software. In: Proceedings of the Audio
Engineering Society 107th Convention, 1999

15. Cointe, P., Briot, J.P., Serpette, B.: Object-Oriented Concurrent
Programming, chapter The FORMES Language: a Musical Appli-
cation of Object Oriented Concurrent Programming. MIT Press,
Cambridge (1987)

16. Cook, P.: Synthesis Toolkit in C++. In: Proceedings of the 1996
SIGGRAPH, 1996

17. Dannenberg, R.B.: Combining visual and textual representations
for flexible interactive audio signal processing. In: Proceedings of
the 2004 International Computer Music Conference (ICMC’04)
(2004)

18. Dannenberg, R.B.: Combining visual and textual representations
for flexible interactive audio signal processing. In: Proceedings of
the 2004 International Computer Music Conference (ICMC’04)
(2004)

19. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refac-
toring: improving the design of existing code. Addison–Wesley,
New York (1999)

20. François, A.R.J., Medioni, G.G.: A modular middleware flow
scheduling framework. In: Proceedings of ACM Multimedia 2000,
pp. 371–374, Los Angeles, CA, November 2000

21. François, A.R.J., Medioni, G.G.: A modular software architec-
ture for real-time video processing. In: IEEE International Work-
shop on Computer Vision Systems, pp. 35–49. Vancouver, B.C.,
Canada, July 2001

22. Johnson, R., Gamma, E., Helm, R., Vlissides, J.: Design Patterns—
Elements of Reusable Object-Oriented Software. Addison–
Wesley, New York (1996)

23. Garcia, D., Amatrian, X.: XML as a means of control for audio pro-
cessing, synthesis and analysis. In: Proceedings of the MOSART
Workshop on Current Research Directions in Computer Music,
Barcelona, Spain, 2001

24. Green, T.R.G., Petre, M.: Usability analysis of visual program-
ming environments: a “cognitive dimensions” framework. J. Vis.
Lang. Comput. 7(2), 131–174 (1996)

25. Haas, J.: SALTO—a spectral domain saxophone synthesizer. In:
Proceedings of MOSART Workshop on Current Research Direc-
tions in Computer Music, Barcelona, Spain, 2001

26. Hebel, K.J.: The well-tempered object. musical applications
of object-oriented software technology, chapter Javelina: An
Environment for Digital Signal Processor Software Develop-
ment. pp. 171–187. MIT Press, Cambridge (1991)

27. Hylands, C. et al.: Overview of the Ptolemy Project. Technical
report, Department of Electrical Engineering and Computer Sci-
ence, University of California. Berklee, CA, USA (2003)

28. Johnson, R.E., Foote, J.: Designing Reusable Classes. J. Object
Oriented Program. 1(2), 22–35 (1988)

29. Lazzarini, V.: Sound processing with the SndObj Library: an over-
view. In: Proceedings of the 4th International Conference on Dig-
ital Audio Effects (DAFX ’01), 2001

30. Lee, E.A., Park, T.: Dataflow process networks. In: Proceedings of
the IEEE, vol. 83, pp. 773–799 (1995)

31. Lindblad, C.J., Tennenhouse, D.L.: The VuSystem: A Program-
ming System for Compute-Intensive Multimedia. IEEE J. Sel.
Areas Commun. 14(7), 1298–1313 (1996)

32. Lourens, T.: TiViPE—Tino’s visual programming environment.
In: Proceedings of the 28th Annual International Computer Soft-
ware and Applications Conference (COMPSAC’04), pp. 10–15,
2004

33. Lucid, H., Huljenid, D.: Developing multimedia services using
high-performance concurrent communication design patterns. In:
Proceedings of the 7th International Conference on Telecommu-
nications. ConTEL 2003, 2003

34. Manolescu, D.A.: A dataflow pattern language. In: Proceedings of
the 4th Pattern Languages of Programming Conference, 1997

35. Mayer-Patel, K., Rowe, L.: Design and performance of the Berke-
ley continuous media toolkit. In: Proceedings of Multimedia Com-
puting and Networking 1997, pp. 194–206, San Jose, CA (1997)

36. Mellinger, D.K., Garnett, G.E., Mont-Reynaud, B.: The Well-
tempered Object Musical Applications of Object-Oriented Soft-
ware Technology, chapter Virtual Digital Signal Processing in an
Object-Oriented System. pp. 188–194. MIT Press, Cambridge
(1991)

37. Parks, T.M.: Bounded Schedule of Process Networks. PhD thesis,
University of California at Berkeley, 1995

38. Pope, S.T.: Squeak: Open Personal Computing and Multime-
dia, chapter Music and Sound Processing in Squeak Using
Siren. Prentice- Hall, Englewood Cliffs (2001)

39. Pope, S.T., Ramakrishnan, C.: The Create Signal Library (“Siz-
zle”): Design, Issues and Applications. In: Proceedings of the 2003
International Computer Music Conference (ICMC ’03), 2003

40. Puckette, M.: Pure data. In: Proceedings of the 1996 International
Computer Music Conference, pp. 269–272 (1996)

41. Puckette, M.: Max at seventeen. Comput. Music J. 26(4), 31–
43 (2002)

42. Roberts, D., Johnson, R.: Evolve frameworks into domain-specific
languages. In: Proceedings of the 3rd International Conference on
Pattern Languages for Programming, Monticelli, IL, USA, Sep-
tember 1996

43. Robledo, E.: RAPPID: robust real time audio processing with
CLAM. In: Proceedings of 5th International Conference on Digital
Audio Effects, Hamburg, Germany, 2002

44. Scaletti, C., Johnson, R.E.: An interactive environment for object-
oriented music composition and sound synthesis. In: Proceedings
of the 1988 Conference on Objec-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA’88), pp. 25–30,
September 1988

45. Tzanetakis, G., Cook, P.: Marsyas3D: a prototype audio browser-
editor using a large-scale immersive visual and audio display. In:
Proceedings of the International Conference on Auditory Display
(ICAD). IEEE, 2001

46. Tzanetakis, G., Cook, P.: Audio Information Retrieval using Mars-
yas. Kluewer, Dordrecht (2002)

47. Upson, C. et al.: The application visualization system: a compu-
tational environment for scientific visualization. IEEE Comput.
Graph. Appl. 9(4), 32–40 (1989)

48. van Dijk, H.W., Sips, H.J., Deprettere, Ed F.: On context-aware
process networks. In: Proceedings of the International Symposium
on Mobile Multimedia & Applications (MMSA 2002), December
2002

49. Vercoe, B.L.: CSound. The CSound Manual Version 3.48. A Man-
ual for the Audio Processing System and supporting program with
Tutorials, 1992

50. Weinand, A., Gamma, E., Marty, R.: Design and implementation of
ET++, a seamless object-oriented application framework. Struct.
Program. 10(2) (1989)

123

32 X. Amatriain et al.

51. Whelan, P.F., Molloy, D.: Machine Vision Algorithms in Java:
Techniques and Implementation. Springer, Berlin (2000)

52. Wilson, D.A.: Programming With Macapp. Addison–Wesley,
New York (1990)

53. Wright, M.: Implementation and performance issues with open
sound control. In: Proceedings of the 1998 International Computer
Music Conferen ce (ICMC ’98). Computer Music Association,
1998

54. www CLAM. CLAM website: http://www.iua.upf.es/mtg/clam,
2004.

55. www Dannenberg. Dannenberg website: http://www.cs.cmu.edu/
rbd/doc/icmc2005workshop/, 2004

56. Young, M., Argiro, D., Kubica, S.: Cantata: visual programming
environment for the khoros system. Comput. Graph. 29(2), 22–
24 (1995)

123

http://www.iua.upf.es/mtg/clam
http://www.cs.cmu.edu/rbd/doc/icmc2005workshop/
http://www.cs.cmu.edu/rbd/doc/icmc2005workshop/

	A framework for efficient and rapid developmentof cross-platform audio applications
	Abstract
	Introduction
	Metamodels and patterns
	4 MPS
	Life-cycle and configurations
	Static versus dynamic processing compositions
	Processing networks
	Towards a pattern language for dataflow architectures
	Pattern: Typed connections
	Pattern: Port monitors
	Patterns as a language
	CLAM components
	The infrastructure
	The repositories
	Tools
	XML
	GUI
	Platform abstraction
	CLAM applications
	Spectral modeling analysis/synthesis
	The annotator
	Others
	CLAM as a rapid prototyping environment
	Target applications
	Main architecture
	Run-time engine
	Dynamic building
	Relating processing and user interface
	Thread safe communication in real-time
	System back-end
	The big picture
	A (very brief) survey of existing audio environments
	CLAM in the big picture
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

