
1284 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 6, OCTOBER 2007

A Domain-Specific Metamodel for
Multimedia Processing Systems

Xavier Amatriain

Abstract—In this paper, we introduce 4MPS, a Metamodel for
Multimedia Processing Systems. The goal of 4MPS is to offer a
generic system metamodel that can be instantiated to describe any
multimedia processing design. The metamodel combines the ad-
vantages of the object-oriented paradigm and metamodeling tech-
niques with system engineering principles and graphical models of
computation.

4MPS is based on the classification of multimedia processing ob-
jects into two main categories: Processing objects that operate on
data and controls, and Data objects that passively hold media con-
tent. Processing objects encapsulate a method or algorithm. They
also include support for synchronous data processing and asyn-
chronous event-driven Controls as well as a configuration mecha-
nism and an explicit life cycle state model. Data input to and output
from Processing objects is done through Ports. Data objects offer
a homogeneous interface to media data, and support for metaob-
ject-like facilities such as reflection and serialization.

The metamodel can be expressed in the language of graphical
models of computation such as the Dataflow Networks and presents
a comprehensive conceptual framework for media signal pro-
cessing applications. 4MPS has its practical validation in several
existing environments, including the author’s CLAM framework.

Index Terms—Dataflow graphs, modeling, multimedia systems,
object-oriented methods, systems engineering, visual languages.

I. INTRODUCTION

I N THIS PAPER, we present a metamodel for designing mul-
timedia processing software systems (i.e., multimedia sys-

tems that are designed to run preferably on software platforms
and are signal processing intensive). Such systems share many
constructs not only in the form of individual and independent
design patterns but also at the overall system model level. This
is even more so for application frameworks, which aim at sup-
porting not just a single system but a set of conceptually related
systems in the multimedia domain.

Furthermore, because of the particular characteristics of these
kinds of systems, they are well suited for using graphical models
of computation such as Dataflow Networks or Kahn Process
Networks. But these models are not common practice for soft-
ware engineers who are much more comfortable with the UML
standard. And domain experts, usually focused on signal pro-
cessing or knowledge discovery issues, usually know little both
about graphical models of computation or UML.

Manuscript received October 3, 2006; revised April 19, 2007. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Dr. Lap-Pui Chau.

The author was with the Media Arts and Technology Program, University
of California, Santa Barbara, CA 93111 USA. He is now with Telefonica I+D,
Barcelona, Spain (e-mail: xar@tid.es).

Digital Object Identifier 10.1109/TMM.2007.902885

When designing CLAM (C++ Library for Audio and Music)
we found out that although different frameworks for audio and
music processing existed none seemed to fit our needs. Also,
while most of them shared similar constructs there was no
formal metamodel that could explain these relations or even
offer a common vocabulary on which to base a new framework
design. Similar solutions were even hard to compare because
of a lack of common ground.

In this context, in this paper we propose a coherent meta-
model that can be used to efficiently model any multimedia
processing system and aims at offering a common high-level
semantic framework for the domain. The metamodel uses the
object-oriented paradigm and exploits the relation between this
paradigm and the notion of graphical models of computation
used in system engineering. Although the relation of the multi-
media field to these concepts might seem obvious, a review of
existing literature reveals that both object-orientation and graph-
ical system modeling are often completely neglected from mul-
timedia systems design.1 In that sense we feel that a major con-
tribution of the 4MPS metamodel is bringing these concepts to
the spotlight in the context of multimedia systems.

Therefore 4MPS provides a common basis for the under-
standing of multimedia systems for experts with different
background such as systems, software, or signal processing
engineering and even multimedia artists. Because of this, the
metamodel in general—and this paper in particular—aims at
being understandable by a general audience by sometimes
avoiding formal syntax from both systems and software en-
gineering. Modeling a system using 4MPS takes a very basic
knowledge in the previously mentioned areas. Nevertheless,
and because of the way the metamodel is architectured, formal
constructs are underlying any 4MPS model and can be accessed
for further formal analysis from different viewpoints.

According to the 4MPS metamodel a generic multimedia
processing system can be thoroughly and effectively described
using simple object-oriented constructs. The metamodel offers
a classification of objects in terms of their role in a multimedia
processing system. Objects are classified into several main
categories: processing objects, data containers, ports, and con-
trols. 4MPS is closely related to Dataflow Process Networks,
a graphical model of computation that has proven useful for
modeling signal processing systems.

Therefore, the metamodel is on one hand related to pattern
languages such as the one presented by Manolescu [5] or Arumi
[6], but it adds modeling structure and architecture as well as
formal background. On the other hand, it is related to system-
level design models such as the one offered by the Ptolemy

1A study of comprehensive references (such as [1]–[4]) reveals the fact that
none of them mention object-orientation or its benefits and there is only a single
mention to Petri Nets but not to any other graphical MoC.

1520-9210/$25.00 © 2007 IEEE

AMATRIAIN: DOMAIN-SPECIFIC METAMODEL FOR MULTIMEDIA PROCESSING SYSTEMS 1285

project [7], but it adds multimedia semantics. In that respect the
main additions to traditional system-level models such as Kahn
Process Networks or Dataflow Networks can be summarized in
the following:2

• distinction between synchronous data flow and
event-driven control flow;

• explicit life cycle for actors (Processing objects) and
graphs (Networks);

• direct relation to object-orientation;
• availability of both dynamic and static composition;
• explicit representation of not only nodes and arcs but also

data objects;
• clear domain-specific semantic for the elements in a pro-

cessing graph and their internals.
The 4MPS metamodel can be instantiated by using a domain-

specific visual language that will be presented throughout the
paper. Nevertheless other approaches such as the use of XML
or scripting languages for working with the metamodel are also
possible and will be outlined.

The metamodel is basically the outcome of many years and
iterations over multimedia, interactive, signal processing, real-
time, and distributed systems, and its constructs are in fact ar-
chitectural patterns found in several similar frameworks and en-
vironments. A high-level domain metamodel such as 4MPS is
validated in a similar way to how a pattern language is: by iden-
tifying repeated and successful instances in the form of multi-
media system models.

In Section II, we will start by defining some foundational
concepts related to system modeling and graphical models of
computation. Then we will complete our problem statement by
defining the requirements of Multimedia Processing Systems.
We will then, in the central part of the paper, define the 4MPS
and its different components. In the next section we will exper-
imentally validate the metamodel by presenting several imple-
mentations, success stories and evaluating its main dimensions.
Finally, we will state our conclusions.

II. BACKGROUND

A. Systems, Models, and Metamodels

The concept of model is closely related to that of system. As a
matter of fact, we define a model as “an abstract representation
of a given system.” A system is “a large collection of interacting
functional units that together achieve a defined purpose” [8]. It
is made up of three main components: a goal, a set of things
and/or rules, and the way this things and/or rules are organized
or connected. The main goal when analyzing a system is to come
up with a valid model for a given purpose. A model consciously
focuses on some domain matters leaving others out.

A given system can be represented by many different models.
These models may have different level of abstraction and pur-
pose, and the “best” model is only the one that is the most useful
for a particular application or purpose [9]. On the other hand a
single model may have multiple interpretations, where the in-
terpretation is defined as the relation of the model to the thing
being modeled [10].

2As it will be later explained, many of these additions can be independently
traced in different prior works, the novelty here being their grouping and their
applicability to multimedia systems.

The current trend in software engineering of giving more
value to models has given place to a methodology known as
model-driven development (MDD) [11]. In traditional or code-
driven development models are treated as simple sketches that
are thrown away once the code is done, but in model-driven de-
velopment the models themselves become the primary artifacts
in the development process. The benefits reported for MDD are
the same as those related to the usage of models in general,
namely: enhanced productivity, portability, interoperability, and
maintenance and documentation [12].

How does the object-oriented paradigm relate to models and
systems? It turns out that one of the most commonly accepted
definitions for “system” is surprisingly related to the software en-
gineering corpus. In [9] the authors define: “A system is a set of
objects together with relationships between the objects and be-
tween their attributes.” This definition, that is largely referenced
and commented in the literatureabout system theory,was made in
1956, much before the term object orientation was even coined.

When modeling a set of related systems belonging to the same
domain, we realize that these models share many constructs.
We are then able to generalize across these different models
and come up with a model of what the set of related models
should conform to. This is what we call a metamodel, a model
of models. In the context of the software engineering commu-
nity, the concept has been mostly used in relation to the Unified
Modeling Language (UML) [13] and the Meta Object Facility
(MOF) [14]. The UML language itself is used to describe the
syntactic rules that all models written in UML must adopt thus
defining a metamodel: a model of models.

Metamodeling is also sometimes understood as the definition
of a semantic model for a family of related domain models. In
this sense metamodeling is related to ontological engineering
[15]. The properties of a well designed ontology are in fact the
same as those of any software system including classes in an
object-oriented design [16].

But while coming up with a formal and complete ontology or
full-fledged metamodel is many times an unnecessary overhead,
the software engineering community is accepting the practical
benefits of metamodeling. In this context, many practitioners
are praising the advantages of using domain-specific languages
[17], that is modeling languages that are created to facilitate
modeling within a particular domain.

But whatever our approach is, it is clear that we usually want
to reuse our abstraction or modeling effort and try to come up
with a model that is not only useful for the particular problem
at hand (“system under study”) but can be reused in similar sit-
uations, i.e., a metamodel.

B. Graphical Models of Computation

Models of computation (MoCs) are abstract representations
of a family of related computer-based systems. Selecting the
appropriate model of computation depends on the purpose and
on the application domain; DSP applications, for instance, will
generally benefit from dataflow models while control-intensive
application mostly use finite state machine or similar models.
A single paradigm, such as object-orientation or functional pro-
gramming, may be used to model different models of computa-
tion and a single model of computation may be appropriate for
different paradigms.

1286 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 6, OCTOBER 2007

Fig. 1. Dataflow Process Network is a particular Graphical Model of Com-
putation where nodes are actors that respond to firing rules. In this particular
example A2 needs to receive 2 tokens from A1 and 1 from A4 in order to fire.

For our purposes most useful models of computation belong
to the category of “graphical MoCs.” By graphical we are ex-
pressing the fact that the system can be explicitly modeled by a
graph, a general mathematical construct formed by “arcs” and
“nodes.” MoCs are described by assigning a concrete semantic
to arcs and nodes and by restricting the general structure of the
graph (see Fig. 1 representing a Dataflow Process Network).
What follows is a very brief description of the most important
graphical MoCs in the context of this paper.3

Process Networks or Kahn Process Networks [20], [21]
is a concurrent model of computation that was originally de-
veloped for distributed systems but has proven its convenience
for signal processing systems. Process Networks are directed
graphs where nodes represent Processes and arcs are infinite
FIFO queues that connect these processes. Writing to a channel
is non blocking (it always succeeds immediately) but reading is
blocking. If a process tries to read from an empty input it is sus-
pended until it has enough input data and the execution context
is switched to another process or level.

Dataflow Networks [22] is a special case of Process Net-
works. In this model arcs also represent FIFO queues. But now
the nodes of the graph represent actors (see Fig. 1). Instead of re-
sponding to a simple blocking-read semantics, actors use firing
rules that specify how many tokens must be available on every
input for the actor to fire. When an actor fires it consumes a finite
number of tokens and produces also a finite number of output
tokens.

Synchronous Dataflow Networks (SDF) is a special case of
Dataflow Networks in which the number of tokens consumed
and produced by an actor is known before the execution begins.

III. MULTIMEDIA SYSTEMS

Before we continue it is important to establish a clear defini-
tion of the problem statement. In order to do so we should ana-
lyze the domain and identify what are the main requirements of
a generic Multimedia System.

Although any system containing text, graphics, video, audio
and music—or any combination of the previous elements—can
be considered a Multimedia system we will restrict our domain

3See [7], [18] or a general purpose Systems Engineering reference such as
[19] for a more comprehensive review of different graphical MoCs.

to the subset of Multimedia Processing Systems. This means
that these systems will be signal processing intensive—leaving
out, for instance, static multimedia authoring systems.

hese are the most important features of any Multimedia Pro-
cessing System (MMPS).

• Data and Process separation: As Rao et al. point out [1]
multimedia consists of “multimedia data” and a “set of in-
structions.” In a MMPS it is important to be able to separate
both concerns.

• Stream oriented: multimedia processing systems work on
streams of data. These streams are made of atomic el-
ements called data tokens. Most streams represent time
varying signals so tokens have a more or less determinate
time stamp. This means that a generic data flow has to be
processed in a synchronous manner.4

• Multiple data: by definition in a typical system we will
have multiple data types and streams that will be processed,
transformed, and composed with.

• Interaction: one important feature of most multimedia sys-
tems is that they are more or less interactive. By this we
mean that the system takes into account the user input in
order to control or modify the execution flow. This means
that, apart from the multiple data streams, we also have
a separate event-driven control flow and this control flow
may somehow influence the data flow.

• System Complexity: even trivial MMPS can yield complex
models containing multiple data types, streams and control
paths. There is a clear need for encapsulation, detail hiding
and composition at different levels.

• Software Orientation: as Mandal points out [2] “computer-
based processing is almost a necessity” for any multimedia
system, let alone those we have defined as being processing
intensive.

IV. 4MPS METAMODEL FOR MULTIMEDIA

PROCESSING SYSTEMS

This section, which represents the core of the paper, presents
the Metamodel for Multimedia Processing Systems, 4MPS for
short. The goal of the metamodel is, beyond the fact of being for-
mally correct, being accessible for the broad multimedia com-
munity. Because of this we have decided to use UML sparsely.
Note though, that using the completely redesigned Activity Di-
agrams in UML 2.0 [23] and some multimedia extensions that
have been introduced to the basic profile [24], 4MPS could in-
deed be described in terms of a UML profile or even better in
terms of a MOF metamodel not to be constrained to deriving it
from UML.5

4MPS provides the conceptual framework (i.e., metamodel)
for a hierarchy of models of media data processing system ar-
chitectures in an effective and generic way. The metamodel is
an abstraction of many ideas developed in implementing the
CLAM framework, studying related solutions, and discussing

4As Mandal [2] and Rao et al. [1] point out, a generic multimedia system
combines both continuous and discrete data. Nevertheless, we consider the ex-
istence of nontemporal data irrelevant in the context of multimedia systems that
are processing intensive.

5As the specification itself points out [13] “There is no simple answer for
when you should create a new metamodel and when you instead should create
a new profile.”

AMATRIAIN: DOMAIN-SPECIFIC METAMODEL FOR MULTIMEDIA PROCESSING SYSTEMS 1287

Fig. 2. Basic elements in 4MPS: Processing objects, represented by boxes, are connected through ports, round connection slots, defining a synchronous data
flow from left to right. They are also connected through controls, square slots, defining in this case a vertical event-driven mechanism. Processing objects can be
composed statically into Processing Composite objects or dynamically into Networks.

models with other authors. As a result of this process these ab-
stractions do in fact reflect the commonalities of a family of re-
lated frameworks: those in the multimedia processing domain.

Using OMG metamodeling terminology [12] most of the fol-
lowing discussion related to 4MPS focuses on level M2 (meta-
model). On the other hand M1 (models) are all the particular
system models that use 4MPS (see Fig. 8, for instance) and M0
objects are the resulting multimedia applications or systems and
the way they use particular run-time instances of the metamodel.

In the previous section we presented the separation of data
and processes as being one of the most important requirements
in Multimedia Processing Systems (MMPS). For that reason,
4MPS classifies objects into two main categories: objects that
perform processing (Processing Objects), and objects that hold
data used by the process (Data Objects).6 Each of these cate-
gories forms a metaclass of the 4MPS Metamodel.

A 4MPS-derived model will be set in terms of Processing ob-
jects deployed as an interconnected Network where each Pro-
cessing object can retrieve Data tokens and modify them ac-
cording to some algorithm (see Fig. 3). A Network is on the one
hand the grouping of a set of Processing objects with a common
goal and on the other the logical entity in charge of scheduling
and triggering the different Processing objects.

A. Processing Objects

The 4MPS Processing metaclass is the abstract encapsulation
of a process following the object-oriented paradigm. We call any
instance of a Processing subclass a Processing object.7

6Other secondary categories such as connecting and interfacing objects, and
application or system-level objects also exist in the metamodel and will be re-
viewed later.

7Apart from the obvious relation to CLAM’s Processing object, the abstrac-
tion is directly related to concepts present in many other frameworks such as
Marsyas’ transformations, OSW’s and Kyma’s transforms, objects in Max and
sound objects in SndObj, unit generators in CSL and Aura, STK’s instruments,
processes in FORMES or virtual processors in VSDP [25].

Fig. 3. Representation of the 4MPS Processing Metaclass. Data traveling from
left to right enters through inports, is processed, and leaves through outports.
Incoming controls can influence the process and/or can be forwarded through
output controls. The Processing metaclass also has a configuration and a way to
access its functionality through the Do operation.

The Processing objects are the main building blocks of a
4MPS modeled system. All processing in a 4MPS model must
be performed inside a Processing object. Fig. 3 illustrates the
different concepts that are encapsulated in the Processing meta-
class. Its main components are a configuration, incoming and
outgoing data ports, incoming and outgoing controls and any
number of internal algorithms.

A Processing object is subject to two different flows: repre-
sented from left to right the data flow and from top to bottom the
control flow. The data flow is synchronous and thus controlled
by an external clock while the control flow is asynchronous
and event-driven. This distinction is necessary in an MMPS as
we need to distinguish between stream-oriented data processing
and control events that do not occur at a particular rate. The

1288 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 6, OCTOBER 2007

distinction between Data and Control is directly related to the
In-band Out-of-band Partitions pattern [5].

When triggering the process we are asking the Processing ob-
ject to access some incoming data and, using the encapsulated
algorithm(s), transform it to some output data. A Processing ob-
ject is able to access external data through its connection Ports.
Input ports access incoming data and Output ports send out-
going data.8 Pairs of ports can be connected defining a commu-
nication channel between Processing objects.

Besides receiving and sending data at a fixed rate through its
Ports, a Processing object may also receive asynchronous Con-
trol events. These events affect the Processing object internal
state and therefore are able to influence the result of the process
itself. The Processing object can also broadcast events through
its output Controls.

But all these mechanisms can be seen as auxiliary to the
processing object main functionality, which is that of encapsu-
lating one or more particular algorithms that work towards a
clearly defined purpose. These algorithms are the ones actually
in charge of processing the input data. The selection of one of
the maybe alternative algorithms available is usually done upon
configuration though some particular Processing objects may be
able to implement a Strategy pattern [26] for dynamically se-
lecting one algorithm or the other.

The execution of the Processing functionality is triggered by
sending it a “Do” message. On the other hand, dynamic changes
(and by dynamic we mean those that can be applied without the
object having to transition from one of the main states to the
other) will be triggered by the acknowledgement of an input
control. The response of a Processing object to a Do message
depends on the values of the data in the input ports but also on
the internal state, which depends on the input controls received.

Processing Object Lifecycle: By analyzing the different mes-
sages that a Processing object receives and the way they influ-
ence its internal state we realize that Processing objects have
an explicit and well-defined lifecycle. This same lifecycle, with
minimal variations, can be found in many multimedia frame-
works and applications.

The Processing object lifecycle is made up of the following
main states: Unconfigured, Ready, and Running (see Fig. 4).
While in the Unconfigured state the Processing object is waiting
to be configured; in the Ready state it can be reconfigured or
started; in the Running state, once the Processing object has
been configured and started, the actual process can be executed;
finally if the process needs to be suspended, in order to recon-
figure for instance, the Processing object can be stopped. In any
of those states the call to an unsupported message—for instance,
Configure when in Running state—leads to an error and back to
the Unconfigured state.

The messages that can be sent to a Processing object in order
to change its state are: Configure, Start, Do and Stop.

Processing Configuration: A Processing Configuration is an
object that contains values for a Processing object’s non-execu-
tion variables, that is all the variable structural attributes that can
only be changed when the Processing object is not in the Run-
ning state. The Configuration is used for setting the initial state
of the Processing object. It may contain attributes related to any
structural characteristic like the algorithms or strategy to be se-

8In some frameworks, input ports are called inlets and output ports outlets.

Fig. 4. Processing state diagram. A 4MPS Processing object has three well-
defined states: unconfigured, ready and running. A Processing object has to first
be correctly configured, and then started. It can only process when in the running
state.

lected and values for structural parameters, such as the expected
size of the incoming data, that can be used to also initialize the
algorithms or internal tables. A Configuration though may also
have initial values for non-structural attributes such as the con-
trols.9

Data and Control Flow: While a Processing object is in the
Running state it will receive, process, and produce two different
kinds of information.

• Synchronous data: will be fed from and to the Ports every
time a Do method is called. Processing objects consume
Data through their input Ports and produce Data to their
output Ports.

• Asynchronous data: will be fed from and to the Controls
whenever a control event happens. They usually change the
internal state/mode of the algorithm

Processing objects consume Data through their input Ports,
process it and leave the result in their output Ports. The Data is
consumed and produced in response to a call to the Do opera-
tion.

It is important to note that in 4MPS a data token is the atomic
partition of any data that refers to an instant in time. Therefore,
a whole spectrum, whatever its size, is a data token. But a chunk
of audio is not considered a token as its data spreads over time,
in this case each individual audio sample is a token in itself.

Processing objects, though, do not consume a unique, not
even fixed, number of data tokens. Each Processing object may
configure the size of the data chunk needed for a single execu-
tion. Also there is no forced relation between the region sizes
of connected ports. An Outport many have a very small region
while the connected Inports have larger reading regions. In this
case the producing Processing object will have to be triggered
several times before the reading Processing objects can proceed
with an execution.

9In Ptolemy [7] for instance, configuration related data is known as parameter
arguments, while flow related data and control is known as stream arguments.

AMATRIAIN: DOMAIN-SPECIFIC METAMODEL FOR MULTIMEDIA PROCESSING SYSTEMS 1289

Ports in a Processing object may be also understood as intel-
ligent pointers to where data is located (usually a memory lo-
cation). If both the outport and one of the inputs are pointing to
the same location, the Processing object is said to be processing
inplace. Not all the Processing objects have the ability of pro-
cessing inplace as this greatly depends on the algorithm that they
encapsulate. Furthermore, input and output ports do not even
have to be the same type: the transformation or process intro-
duced by the processing object on the incoming data can be so
structural that even the data kind may change (e.g., a Processing
object may convert an input “tree” into and output “piece of fur-
niture”).

All interconnected Ports should be strongly typed and expect
the same Data type. Although this condition may be somehow
relaxed in some situations by allowing connections of polymor-
phic Data Ports, this is not common nor recommended. Actually,
and as explained in , we want connections to be handled in a
generic way and therefore introduce polymorphism at the graph
level but we do not want to incur into performance penalty be-
cause of dynamic casting at run-time. This is solved by using the
Typed Connections pattern and through the use of static poly-
morphism (e.g., C++ templates).

In the implementation layer such a structure is deployed
through the Data Node, which is basically a phantom circular
buffer with multiple reading/writing regions. Again see [6] for
more details on this design pattern.

But, apart from the synchronous data flow, Processing objects
can also respond to an asynchronous flow of events. This mech-
anism is encapsulated in the concept of Controls. A Processing
object may have any number of input Controls and output Con-
trols. An input Control affects the non-structural aspect of the
Processing object state. This means that the reception of an input
Control does not produce a transition from one of the three main
states to another. On the other hand, output Controls maybe gen-
erated at any time although it is usual for them to be the result of
one of the two following cases: (1) a response to a received input
Control or (2) a result of a particular algorithm that apart from
(or instead of) producing output data also generates a number
of asynchronous events.

A control event is transmitted from the output control to the
connected input controls as soon as it is generated. The new
control value overwrites the previously existing one even if it has
still not been read.10 Controls must also have a clear initial value,
which in many cases may be set by a configuration parameter.
The initialization of the control value is performed in the Start
transition so that every time that the Stop/Start cycle is followed
the control is able to return to its initial value.

Controls should be simple datatypes such as integers, floats
or boolean. Any structure more complex than that should not
be sent as a Control the reason being that controls are sent
asynchronously and continuously whenever they generate or are
modified. The control associated to a slider, for instance, can be
transmitted several times before actually affecting the result of

10Although this is the default simple behavior for controls in 4MPS more
elaborate mechanisms, such as control buffering, can be implemented at the
receiving Processing Object if necessary. Note though that these buffering
schemes will also require of an appropriate time-stamping mechanism for
controls. This, although possible, is not necessary in the general case when
controls are considered to have a coarse temporal grain. All these extensions
will therefore not be addressed in this paper.

the process, which will happen next time that the Processing Do
is called. It is a waste of resources to transmit complex structures
with this mechanism. Nevertheless, it is easy to add dedicated
Processing objects that convert from Control to Data and vice
versa.

Kinds of Processing Classes: Generators, Sinks and Trans-
forms: In the Kahn Process Network model of computation, two
kinds of subgraphs are of special importance: data sources and
data sinks [21]. In [5] the Data Flow Architecture pattern clas-
sifies modules into sinks, filters, and sources. In a similar way
in 4MPS we identify Generating Processing objects, which are
data sources, and Sink Processing objects, which only consume
data. Transforms represent the general case of Processing ob-
jects that have both input and output ports.

B. Data Objects

All data in a 4MPS model is contained in Data objects, a
concept that is related to the Payloads pattern explained in [5].
This is also sometimes referred to as a content or record object.

4MPS Processing objects can only process Data objects. To
be fully usable in such a context, a Data class must offer a
number of services, namely: introspection or the ability to re-
spond about its own structure; homogeneous interface; encap-
sulation; persistence; composition; and display facilities. Note
that many of these requirements are related to the services of-
fered by MOF meta-objects [14].

Data and Value Attributes: Attributes in a Data class can
be classified into data attributes and value attributes. Data at-
tributes basically act as data containers and they are usually of
complex types such as arrays.

Value attributes act as auxiliary information related to the data
attributes. They are always of simple types such as integer or
floating point numbers. Value attributes can in turn be divided
into informative value attributes and structural value attributes.
Informative value attributes are simple value containers that are
used to interpret the Data content. A modification in such at-
tributes does not imply a change in the related data. Conversely
structural value attributes are meant to inform but also to modify
the internal structure of Data objects.

For example, a Spectrum Data class could have the following
attributes.

• Data Attributes: two buffers, one for the magnitude and
another one for the phase.

• Value Attributes
— Structural: size, when this changes the buffers are re-

sized.
— Informative: spectral range, a change in its value does

not imply any structure change.11

C. Scalable Composition With 4MPS Objects: Networks and
Processing Composites

The 4MPS metamodel offers different mechanisms for com-
posing networks of Processing objects. In this section we will
show their features and intent. Composition in 4MPS is not
actually required; any model can be fully specified by a number
of independent Processing objects. Nevertheless, building

11Note though that even in this trivial example we could decide to treat this as
a structural attribute and execute re-sampling algorithms when this is changed.
Ultimately the developer has to decide on how to treat value attributes.

1290 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 6, OCTOBER 2007

Fig. 5. This figure describes a (partial) metamodel of Network using a class diagram. This metamodel (as a language) is then instantiated when creating networks
with the network editor (see Figure refcap: Network–Editor–Graphical). Note that a 4MPS Network is a dynamic run-time composition of Processing objects that
contains not only Processing instances but also a list of connected Ports and Controls.

self-contained sub-models offers a number of advantages,
namely 1) reuse; 2) complexity and detail hiding, sub-models
can act as intermediate layers that hide complexity from the
user; 3) flow control automation, by building coherent and
homogeneous compositions we are able to apply standardized
approaches to automatic flow control; and 4) efficiency and
optimization, a composition can be a specialized grouping of
Processing objects with a specific purpose and goal that can
therefore be optimized.

The two mechanisms for composing with Processing objects
in a 4MPS model are Networks and Processing Composites.
Networks are dynamic compositions that can be modified at
run time in any way by adding new Processing objects or mod-
ifying connections. Processing Composites are static compo-
sitions that are built at compile time and cannot be modified
thereafter. These 4MPS constructs were already graphically il-
lustrated in Fig. 2.

Note that both mechanisms address the first of the three ben-
efits previously enumerated. But while Networks promote the
ability to use automatic flow control (benefit number 2), Pro-
cessing Composites strive for efficiency (benefit number 3).

In general terms, the dynamic composition offered by Net-
works follows the Dataflow Architecture pattern while the static
composition in Processing Composites follows the Adaptive
Pipeline pattern [5].

Processing Composites: A Processing Composite is a static
composition of 4MPS Processing objects. A Processing Com-
posite is manually implemented by a developer and might be
fine-tuned for efficiency. The list of included Processing objects

and their connections may not be modified at run-time.12 It is a
direct implementation of the Composite pattern [26].

A Processing Composite object has one parent that acts as
the composite and any number of children that act as compo-
nents. Any child can in turn be the parent of other Processing
objects recursively defining different levels of composition. A
Processing Composite object is seen as a regular Processing ob-
ject from the outside, even in a Network-like context.

Networks: A 4MPS Network is a set of interconnected Pro-
cessing objects that collaborate for a common goal and can be
modified at run-time. As illustrated in the UML class diagram
in Fig. 5, it can be seen as a set of Processing objects with con-
nected input and output ports and input and output controls.

A Network has a dynamic list of Processing objects that can
be updated at run-time. In order to define the process graph, the
network must keep track of the list of connected pairs of input
and output Ports. An output Port may have any number of input
Ports connected to it while an input port can only be connected
to a single output Port.

Apart from the process graph defined by interconnected Ports,
a Network has another graph defined by Controls and their con-
nections.

A Network has compositional properties so it can be made
of interconnected Networks that in turn have internal Networks,
etc.

12As a matter of fact we may use the control mechanism in order to change
internal connections or bypass particular Processing objects in a Composite; this
is rather a side effect of the flexibility of the metamodel rather than an important
inherent feature.

AMATRIAIN: DOMAIN-SPECIFIC METAMODEL FOR MULTIMEDIA PROCESSING SYSTEMS 1291

D. 4MPS as a Graphical Model of Computation

4MPS offers an object-oriented metamodel for multimedia
processing systems. Nevertheless, the consequence of applying
object-oriented modeling techniques to the multimedia domain
not surprisingly yields a Graphical Model of Computation. It is
important to stress, though, that graphical MoCs in 4MPS are a
consequence of the metamodeling process and not the opposite:
4MPS was not built as a semantic layer on top of preconceived
graphical MoCs.

In order to identify what is the Graphical MoC that best suits
our metamodel we will first summarize its main properties.

1) In the 4MPS graphical MoC the main nodes in the graph
correspond to Processing objects. 2) By connecting Ports from
different Processing objects we are defining the arcs in the
graphical model. 3) These arcs in the graph are interpreted as
theoretically unbounded FIFO queues13 where data tokens are
written and read. 4) Processing objects produce/consume from
the FIFO queues in a synchronous manner, when told to do so
by the flow control entity. 5) The data consumption/production
rate of Processing objects is not fixed. 6) This consumption
rate may, in some cases, vary at run time. 7) By connecting
controls from different Processing objects we are also defining
a secondary set of arcs; these Controls are transmitted using an
event-driven mechanism as soon as they are generated.

The first four properties confirm the fact that 4MPS’s graph-
ical MoC is related to Process or Dataflow Networks. This
comes to no surprise as those are the models that have been
traditionally found most appropriate for signal processing
related applications.

The fact that Processing objects can produce/consume dif-
ferent quantities of data tokens and that quantity is explicit leads
us to observe that our model can be more easily assimilated to
Dataflow Networks [22]. The “firing rules” of Dataflow Net-
works are translated into region sizes in the 4MPS models. The
quantity of data tokens to be produced or consumed by a Pro-
cessing object Port is specified by giving its region a particular
size. This is precisely what Dataflow Networks firing rules usu-
ally specify.

Synchronous Dataflow Networks have firing rules that are
statically defined so, in order to have regions re-sizeable at run-
time like those found in 4MPS we have to turn to Dynamic
Dataflow Networks. Note though, that 4MPS does not require all
modeled applications to have dynamically re-sizeable regions so
we will in many cases find 4MPS models conveying to the SDF
MoC.

After the previous discussion we may conclude that 4MPS’s
graphical MoC is a “(possibly Dynamic) Dataflow Network.”

In the general case the control mechanism in 4MPS will not
introduce any difference in that respect as control events cannot
modify “structural” aspects of the Processing Objects. Never-
theless, in some specific systems these control events may in-
deed need to interact on the firing rules therefore modifying the
regular data flow. Although we will not favor these interactions,
these models do deserve our special attention.

Several models exist for mixing control and data flow
[27]–[29] the one that is best suited to our particular situation is

13Although the general Process Network graphical model uses unbounded
FIFO queues it is well-known that it is usually possible to construct bounded
memory implementations [22].

that of “Context-aware Process Networks” [30]. As pointed out
by the authors, adding asynchronous coordination introduces
indeterminacy but this can be oraclised (isolated) into the
control stream.

Scheduling: One of the advantages of having identified the
underlying graphical model of computation is that we can then
use related techniques to analyze the behavior of the metamodel.
Of particular interest to us is the choice of an appropriate sched-
uling technique or algorithm.

Scheduling Process or Dataflow Networks is a nontrivial
issue. It is beyond the scope of this paper to give an overview of
such techniques and we refer the reader to the related literature
[21], [31]–[33]. It is important to note though, that the goals
of any practical scheduler are to offer a complete output and
to achieve this with bounded memory (note that the boundness
condition is imposed by implementation issues, not the theo-
retical model). Unfortunately, boundness and termination are
undecidable in the general case.

As we said before, in the most simple case, a 4MPS model can
be understood as a Synchronous Dataflow Network (SDF). This
assimilation will stand valid as long as the ports do not change
their window size in run-time and controls do not interfere with
data flow or graph structure.

SDFs can in many cases be scheduled statically by building a
periodic schedule. This method should of course be preferred
whenever feasible as it will yield a more efficient system at
run-time and speed up execution. The problem is that it is not
always possible to construct such a schedule [31]. First, dead-
locks have to be ruled out. Secondly the order of the so-called
topology matrix has to be one less the number of actors in the
graph. (See [33] for a complete explanation of how this matrix
is defined and its different properties.) In those cases, the net-
work can determine a complete cycle consisting of “f” firings
for each Processing object.

If a static schedule can not be decided—this being probably
the general case—we should resort to any run-time sched-
uling strategy. Different algorithms are found in the literature,
broadly classified into eager (a.k.a demand-driven or pull)
and lazy (a.k.a. data-driven or push). Using a lazy policy the
execution thread starts by the outermost Processing object in
the Network (the one whose output Port corresponds to the
output of the Network). If this Processing object checks that
it does not have enough input data it hands the control to the
Processing object whose output Port is connected to its inputs
and so on. In the eager version, the process starts with the
Processing object that acts as the input to the chain.

If the network under study has indeed dynamic run-time
changing firing rules we are then left no choice but to turn to
dynamic on-line scheduling algorithms as the one found in
[31].

E. 4MPS Networks, Run-Time Execution, and Domain-Specific
Languages

Although so far our description has been mostly concerned
with the structural properties of the metamodel components, the
metamodel does also in fact offer an execution model. Our goal
is for the metamodel to yield models and ultimately systems that
are both efficient and flexible at run-time.

1292 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 6, OCTOBER 2007

In previous sections we described a 4MPS Network as mostly
a compositional tool. Nevertheless, this metaclass is much more
important than that as a final 4MPS system can if fact be seen as
a 4MPS Network—what we call the Top Network. Therefore,
the run-time properties of the system will be those of a Net-
work. To start with, and because as already explained a Network
can in fact be seen as a Processing object, a Network also has
an explicit three-state life cycle as the one illustrated in Fig. 4.
In Fig. 5 we see that a Network also has the necessary oper-
ations to transition from one state to the next. When Config-
uring, Starting, or Stopping a Network ,we are in fact Config-
uring, Starting, and Stopping all the Processing objects in it.

Once in the Running state, the Network is in charge of calling
the execution of the Do operation in all its Processing objects. In
order to do so though, a particular run-time strategy has to be fol-
lowed: either we have a static schedule that keeps a list of nodes
to execute or we decide for any type of dynamic scheduling such
as eager or lazy execution. As already explained the choice of
the scheduling policy is not easy and depends on the topology
of the network as well as the requirements of the system.

Because of this, responsibility over scheduling policy should
be decoupled from regular run-time Network operations. In
4MPS (see Fig. 5) this responsibility is delegated to the Flow-
Control abstract metaclass that is in charge of keeping a pointer
to the next Processing object that will be executed. Subclassing
this metaclass allows for different flow control policies to be
implemented offering a flexible yet efficient and ready-to-use
run-time model.

Yet another important property of a 4MPS Network is its
ability to be stored in a format that can later be processed
and understood (see method Store in Fig. 5). Although the
graphical representation of the metamodel is usually preferred,
it sometimes is interesting for practical purposes to have a
direct one-to-one mapping to a textual format. In the case of
CLAM, XML was chosen as a general purpose storage format.
Listing 1 (see Fig. 9) is an example of a text representation of a
4MPS Network.

Note that this Network description, which has a complete def-
inition of an 4MS Network, can be considered as an XML-based
domain-specific modeling language (DSML) in its own. This
way we see that the metamodel is not coupled to a particular vi-
sual language but can in fact be instantiated by different DSMLs
such as an XML dialect or a scripting language (see [34] for an
example of how a scripting language can also be used to interact
with a 4MPS based model). As a matter of fact, in the context
of application frameworks such as CLAM, one can interact with
the metamodel by directly manipulating classes in an OO lan-
guage such as C++.

V. METAMODEL VALIDATION AND IMPLEMENTATION

Evaluating a metamodel is not easy. A proper evaluation
should include a combination of qualitative and quantitative
studies. Although a thorough evaluation is beyond the scope
of this paper, in this section we will outline the validity of
the metamodel and the associated domain-specific modeling
languages by using a combination of both approaches. And be-
cause in Software Engineering validation and implementation
go hand in hand [35] we will use this same section to explain
some of the metamodel realizations.

Fig. 6. CLAM components. A CLAM application makes use of both the
CLAM Processing Kernel and its Tools. The Processing Kernel includes
an Infrastructure, which is basically an implementation of the 4MPS, and a
Repository of black-box ready-to-use algorithms and data. The Tools package
contains components for services such as XML serialization, or cross-platform
input/output.

We will first explain the realization of the metamodel in
CLAM and a number of other frameworks. Then we will
compare the proposed metamodel to other existing and related
metamodels. Finally we will formally assess the validity of the
framework by combining dimensions derived from the general
Software Engineering corpus [35] and others borrowed from
the Cognitive Dimensions framework [36], which has been
specifically designed for evaluating visual languages.

A. CLAM

CLAM (C++ Library for Audio and Music) is an award-win-
ning14 framework that aims at offering extensible, generic and
efficient design and implementation solutions for developing
Audio and Music applications both for research an end-users.
CLAM is both the origin and the main proof of concept of
4MPS. In the next paragraphs we will give a very brief presen-
tation of the framework, please see [37] or [38] for more details.

CLAM offers a processing kernel that includes an infra-
structure and Processing and Data repositories (see Fig. 6).
In that sense CLAM is both a black-box and a white-box
framework [39]. It is black-box because the already built-in and
ready-to-use components included in the repositories can be
connected with minimum programmer effort in order to build
new applications. And it is white-box because the metaclasses
that make up the infrastructure and are a direct implementation
of the 4MPS metamodel can be easily refined to extend the
framework components with new Processing or Data classes.

CLAM is comprehensive since it not only includes classes for
processing but also for audio and MIDI input/output, XML se-
rialization services, algorithm and data visualization and inter-
action, and multithreading handling. The framework deals with
a wide variety of extensible data types that range from low-level
signals (such as audio or spectrum) to higher-level semantic
structures (such as musical phrase or segment).

14CLAM received the ACM 2006 award for the Best Open Source Multimedia
Software.

AMATRIAIN: DOMAIN-SPECIFIC METAMODEL FOR MULTIMEDIA PROCESSING SYSTEMS 1293

Fig. 7. Network Editor Graphical Interface. The Network Editor is CLAM’s quintessential application. It is in fact a graphic representation of the 4MPS metamodel.
The application allows to create new Processing Networks from pre-existing Processing objects and can be used as a rapid prototyping environment. In this example
we have configured a network in which the incoming audio is analyzed in order to display its tonality content on one branch (three different visualization widgets
are used on the upper right part of the network), and transformed with a frequency domain filter on another branch. Note how ports are represented by circles
and controls by rectangles, both attached to Processing objects. Five sliders are used to control different aspects of the filter. The life cycle of the Processing
objects is represented explicitly such as in the non connected one in the center of the network where the color represents that the object is unconfigured. Note
that the top center Processing object has a different colored port. This is simply a visual cue that highlights a selected element while also offering a tooltip with
the element name.

It is cross-platform as all the code is ANSI C++ and it is reg-
ularly compiled under Linux, Windows and Mac OSX using the
most commonly used compilers. The framework can be used ei-
ther as a regular C++ class library or as a prototyping tool. In the
first mode, the user can extend, adapt or optimize the framework
functionality in order to implement a particular application. In the
second mode, the user can easily build a prototype application in
order to test a new algorithm or processing application [40].

Success Stories: CLAM responded to a need for having a
structured repository of signal processing tools focused on audio
and music. For that reason, it has been used as an internal de-
velopment framework since its very beginning.

Thus, CLAM applications have been developed and have
been used as benchmarks to test the feasibility of the framework,
and therefore the metamodel, under very different requirements.
CLAM success stories are in fact 4MPS’ success stories and
partially validate the metamodel. In the following paragraphs
we will review some of them (please refer to CLAM’s website
at www.clam.iua.upf.edu for further up-to-date information on
the framework and its applications):

The Network Editor (see Fig. 7) is a graphical application
for editing a CLAM::Network object. It can be considered in
many ways as a 4MPS Visual building tool as the metamodel’s
concepts are indeed directly mapped into the tool. The output
of the editor is an XML description of a CLAM 4MPS-com-
pliant network. This description can be loaded from the Pro-
totyper—another CLAM tool that can load qtDesigner visual
designs and bind them with a processing network—in order to
create a stand-alone application without having to write a single
line of code (see [41] for more details).

The NetworkEditor has already been used as a tool that en-
ables easy communication with domain experts with no soft-

ware experience therefore proving the usefulness of the meta-
model in these circumstances.

SMSTools is a CLAM application used to analyze, transform
and re-synthesize sound in the spectral domain [42]. Apart from
the interest in the application itself it is important to note that
this is a direct port of an application that existed and was being
used before the framework was born and the metamodel formu-
lated. As a matter of fact, the development of the framework
was driven by three applications that already existed and were
ported through the process. Those applications included very
different domain requirements (such as run-time efficiency or
complex visualization) and therefore proved the validity of the
metamodel in practical scenarios. Also porting these applica-
tions to a common framework and metamodel proved that they
could be optimized more efficiently and the time to transfer
knowledge to new developers was drastically reduced.

CLAM includes other applications such as SALTO, a software
based brass synthesizer; Spectral Delay, a simple application
that separates the input signal into three spectral bands each of
which is then delayed separately (see the block diagram of the
process in Fig. 8; or the Annotator, a tool for editing and an-
notating audio material [43]. Furthermore CLAM can be used
to create plug-ins in several different formats such as VST or
LADSPA.

B. Other Known Uses

The CREATE Signal Library (CSL, pron. “sizzle”) [44] is
a C++ class library for signal synthesis and processing. CSL’s
design is an instance of the 4MPS metamodel. CSL has evolved
through several major re-writes since 1998 and although it was
not originally designed having the 4MPS metamodel in mind,
the latest releases have been influenced by it. As a matter of fact,

1294 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 6, OCTOBER 2007

Fig. 8. Spectral Delay block diagram. Using the 4MPS we can easily model an application such as CLAM’s Spectral Delay. In it, the input sound is divided into
three bands and each band is then delayed independently.

release 4 of the framework is a complete rewrite that follows the
4MPS metamodel [45].

The kernel of CSL is a group of metaclasses that map directly
onto the 4MPS metamodel of Processing, Data, and control I/O
Ports. Referring back to Fig. 2, applications consist of networks
of CSL processing objects interconnected via control and signal
flows. The impact of the metamodel entails not just the class
hierarchies, but also the object life-cycles and signal processing
network composite models.

Another related framework that has been heavily influenced
by the metamodel is Marsyas [46], an environment for devel-
oping music information retrieval applications.

Also the metamodel has recently been used to model a frame-
work for audio spatialization [47]. And finally, to prove its ap-
plicability to the general multimedia domain and not only audio,
it should be noted that the metamodel has been instrumental in
the design of the artificial vision and hand recognition system
described in [48].

C. Related Multimedia Frameworks and Metamodels

We have proven the usefulness of 4MPS in several cases
of general purpose frameworks and applications. Nevertheless
many of its constructs are found in many other similar frame-
works in the multimedia domain.15 The following is a list of
some of the frameworks in multimedia, image processing and
audio/music processing, that have been reviewed while de-
signing the metamodel. Many of them are extensively reviewed
in [18].

• Multimedia Processing Frameworks: Ptolemy [7], BCMT
[49], MET++ [50], MFSM [51], VuSystem [52], Java
I-HTSPN [53].

• Audio Processing Frameworks CLAM [40], CSL [44],
Marsyas [54], STK [55], Open Sound World (OSW) [56],
SndObj [57].

• Visual Processing Frameworks Khoros/Cantata [58](now
VisiQuest), TiViPE [59], AVS [60], FSF [61].

15Although 4MPS was initially implemented in the Audio/Music domain, it
is important to remember that the metamodel is not coupled to a particular data
or processing style. In that sense, note that Audio and Music applications, such
as the ones found in CLAM or CSL, are in general multimedia as they include
audio signal data, symbolic data in the form of MIDI, scores or metadata, and
graphics in the form of signal-related and symbolic dynamic presentations. Also,
we are currently successfully applying the metamodel to the modeling of sys-
tems for image and html processing.

Most of these frameworks share some constructs with the
4MPS metamodel. The relation between some of these concepts
(such as process orientation, separation of data and control, or
static and dynamic composition of process networks) and 4MPS
has been highlighted throughout the presentation of the Meta-
model in Section IV. A thorough review of all such relations,
though, is beyond the scope of this paper and we refer the inter-
ested reader to [18].

But when trying to compare these frameworks to the 4MPS
metamodel at a higher level than that of the particular con-
structs (or patterns) we have to face the fact that, although every
framework has an implicit metamodel, very few of them actu-
ally specify it even informally. In the following paragraphs we
will briefly comment on those very few exceptions.

Francois’ Software Architecture for Immersipresence (SAI)
is related to his MFSM and FSF frameworks. It aims at offering
“a software architecture model for designing, analyzing and
implementing applications that perform distributed, asyn-
chronous parallel processing of generic data streams” [51].
In many senses this metamodel shares many properties with
4MPS: SAI’s cells are related to 4MPS’ Processing objects
while its pulses are our Data. SAI brings 4MPS implementation
details such as the Data Node to the surface because of the
need to distinguish between persistent and volatile data in a
purely asynchronous model (this distinction is not necessary
in 4MPS). Although this construct resembles Petri Nets the
SAI metamodel is not related by the author to any formal
system model. SAI is not formally related to object-orientation
either. It also lacks many of the 4MPS highlights (different
composition models, controls versus data, explicit life cycle
and internal modeling of the graph elements).

The Hierarchical Timed Stream Petri Nets model [53] is an
extension of traditional Petri Nets related to the Java I-HTSPN
framework. It is therefore highly coupled to this particular
graphical MoC. The use of HTSPN does apply to control-in-
tensive multimedia systems, especially those based on discrete
time data, being particularly well suited for multimedia presen-
tation and composition systems. However it is not suitable for
the general case of Multimedia Processing Systems presented
in this paper, which have not only timed interactions between
data but also timed processes that modify data streams and
dynamic interactions with those processes.

Other models such as OMMMA (object-oriented Modeling
of Multimedia) [62] focus on modeling multimedia applications

AMATRIAIN: DOMAIN-SPECIFIC METAMODEL FOR MULTIMEDIA PROCESSING SYSTEMS 1295

from a traditional object-oriented perspective where the focus is
put on data entities and processes are auxiliary properties of the
data. OMMA delivers in the modeling of data entities and as
such could be used for modeling in detail the Data entities in
4MPS. However, it falls into the shortcomings of UML already
mentioned when it comes to modeling processes and flows with
enough expressivity.

Finally, 4MPS shares some constructs with models and
frameworks that are strictly DSP-oriented (see [63] for a com-
parison of many of them). Models such as the one presented
in [64] are also built on the grounds of graphical models of
computations such as Dataflow Networks for being this a
natural model for signal processing systems.

In this context it is worth to mention the Ptolemy framework
for probably being the best representative of these DSP soft-
ware environments. Ptolemy focuses on heterogeneous system
design [7]. As the authors explain, Ptolemy is “first and foremost
a laboratory for experimenting with design techniques”. In that
sense, the framework is built on top of many different Models of
Computation with the main goal being offering ways to interact
with these models and combine them. While in 4MPS graph-
ical MoC are a consequence of the design process and domain
requirements in Ptolemy they are the origin of the framework
itself. On the other hand, Ptolemy focuses mainly on embedded
systems.

As opposed to 4MS Ptolemy and similar DSP-oriented frame-
works do not offer any semantic layer related to a particular
application domain because they aim at being “domain-inde-
pendent.” Ptolemy and 4MPS attack the problem of system de-
sign with different goals and from different perspectives, of-
fering different layers to interact with. As a matter of fact, a
4MPS model could very well be built using the Ptolemy frame-
work (note that Ptolemy has indeed been used for modeling
image processing systems, for instance). But the framework it-
self, without any intermediate semantic layer, is hard to access
by a Multimedia Engineer.

D. Evaluating the Metamodel

In order to finish our metamodel validation we will first
briefly discuss the following high-level dimensions: feasibility,
completeness, and usability. These dimensions are derived
from the ones used in [65]. We will then review the different
dimensions in the Cognitive Dimensions framework [36] and
discuss their applicability to 4MPS.

Feasibility: This dimension refers to how practical are the
abstractions in the metamodel and how well they fit the require-
ments in our particular domain. Is it feasible to implement ef-
ficient multimedia processing systems that are modeled using
4MPS? This should be the first question to address as any further
discussion could be invalidated by a negative answer. In our case
it has clearly been shown in the previous paragraphs that it is
feasible to construct efficient working systems using 4MPS and
that the metamodel can be implemented through frameworks in
several ways and flavors.

Completeness: This dimension reflects two complementary
questions. 1) Can any system in the domain be modeled with
the metamodel that is proposed? 2) Can a system be completely
modeled using and instance of the metamodel? In both cases
answers are affirmative in respect to 4MPS. As shown in this

Fig. 9. Listing 1. Example of an XML-based 4MPS Network definition. First,
Processing objects and their configurations are listed, then port and control con-
nections, and finally the kind of flow control policy to use.

section multimedia processing systems from the widest possible
range have been modeled using 4MPS: from real-time audio ef-
fects to image recognition and hand-tracking algorithms; from
off-line applications for content-extraction and metadata gener-
ation to prototyping environments. No application in the domain
(even some previously existing that have been ported) has had
to artificially adapt itself to the metamodel.

It is also important to note that there are tools that can help
the user in dealing with the different levels of the metamodel,
the model, and the final system. As presented in [41] CLAM
offers tools for visually patching a 4MPS model and create a
final standalone system without even writing a line of code.

1296 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 6, OCTOBER 2007

Usability: Is it easy to build new models and generate sys-
tems using 4MPS? Is the metamodel usable by third parties?
Can existing projects easily be converted to the metamodel?
This is probably the hardest question to answer especially be-
cause of the ambiguity of the word easily. In order to give a
complete answer we will have to resort to the finer grain dimen-
sions offered by the Cognitive Dimensions framework. Never-
theless, as a first take on the issue it is important to highlight
that the metamodel has been adopted by third parties in several
ways. Not only have third parties used the metamodel through
the CLAM framework, but what is more interesting, some third
party frameworks have embraced the metamodel. Also, existing
applications have been ported to the metamodel through the
CLAM framework.

Once the main questions have been addressed we will now
concentrate on finer-grain dimensions included in the Cognitive
Dimensions framework. Most of them are actually related to the
Usability issue outlined above.

Closeness of Mapping: This refers to how directly entities in
the problem domain are translated onto the software solution.
As already reported in [36], visual dataflow-based languages
help in improving this dimension. In the case of 4MPS this has
proved to be even more so because of the addition of the sec-
ondary control flow and the direct representation of program
objects in the visual language.

Viscosity: This dimension is defined as the “resistance to
change” of a particular language or representation. As reported
again in [36] visual languages have issues with viscosity be-
cause of the fact that it is not always easy to maintain a com-
pact and understandable visual representation. While this is so,
it is important to remember that the 4MPS metamodel does not
rely only on its visual representation. In previous sections we
also introduced an XML representation for 4MPS systems with
a one-to-one mapping to the visual language. This allows the
use of regular text-based tools and operations (i.e., “Replace
All”) that reduce the number of primitives needed for an action
therefore reducing viscosity. Furthermore, as already explained,
the metamodel can also be instantiated through scripting or ob-
ject-oriented programming languages.

Hidden Dependencies: These occur when a part in a program
is affected by another part without any explicit connection. In
4MPS all connections are explicit and no other communication
is allowed between processes. Hidden dependencies are greatly
reduced in comparison to traditional approaches.

Hard Mental Operations: This deals with how hard it is to
understand the different steps involved in an operation and usu-
ally relates again to the difficulty in combining individual prim-
itives. As reported in [36] this is directly related to the amount
of possible primitives and the different interfaces/behaviors they
offer. In 4MPS only one primitive exists (the Processing object)
and the interface is limited by clear entry points—ports and con-
trols. The fact that composability is also offered reduces greatly
the number of hard mental operations in a particular layer.

Imposed Guess Ahead: This dimension refers to how much
the user is forced to make a decision before the information
is available. Graphical languages help improve this dimension
[36] and 4MPS is no exception. It is for this same exact reason
that the 4MPS visual editor implemented in CLAM has been
used successfully as a prototyping tool in several settings.

Secondary Notation: This deals with how easy it is to add
extra information or groupings that do not relate to the general
program functionality. The nonexistence of this secondary no-
tation has been reported as a major shortcoming in graphical
languages [36]. The fact that the 4MPS metamodel can be rep-
resented both visually and through text or any other program-
ming language allows for secondary notation to be used under
any circumstance.

VI. CONCLUSION

We previously defined a Multimedia Processing System as
presenting a clear separation between data and processes, and
being stream oriented, capable of processing multiple data
types, interactive, complex, and software based. The meta-
model presented in this paper addresses all of these concerns
and offers practical modeling solutions that can yield efficient
applications with very different requirements.

A metamodel can be evaluated through the systems it gener-
ates and their usefulness in a particular domain. In Section V,
we showed how the metamodel is validated experimentally and
also through the evaluation of several formal dimensions. All
of this leads to the conclusion that 4MPS provides a useful and
clear way to model multimedia processing systems, and it offers
an explicit graphical model of computation that helps in mod-
eling complex systems and understanding them.

In Section II, we listed the main benefits of using models. But,
as Willrich et al. note [53] maybe the two main benefits of de-
scribing a model with formal semantics are that the model can
be checked and verified against design errors, and the model can
be used to derive executable code. We have shown how 4MPS
yields itself to formal analysis allowing for not only verifica-
tion but also for implementing scheduling algorithms. Also we
showed how the metamodel not only can be implemented in ap-
plication frameworks such as CLAM but its visual language can
be used to create a visual builder such as the Network Editor that
allows to derive executable code from the system specification.

But besides the previous benefits, and perhaps most impor-
tantly, a metamodel as the one presented defines a common vo-
cabulary and a conceptual meeting point for those interested in
multimedia system modeling and software development. Mul-
timedia system designers that know 4MPS are able to commu-
nicate their ideas better and more efficiently. Although there is
still a long way to go to formally define our field we hope to
have contributed in that direction.

ACKNOWLEDGMENT

The author wishes to thank the Developers and Multimedia
Researchers for fruitful discussions which led to the metamodel
presented in this paper: first and foremost, the CLAM Devel-
opment Team (currently led by P. Arumi and D. Garcia, Uni-
versitat Pompeu Fabra), S. Pope (Project Leader for the CSL
framework) for help in reviewing earlier versions of the meta-
model and this paper, and E. Lee, G. Tzanetakis, R. Dannenberg,
M. Puckette, and others, for contributing their reviews and sug-
gestions.

REFERENCES

[1] K. Rao, Z. Bojkovic, and D. A. Milovanovic, Multimedia Commu-
nication Systems. Techniques, Standards and Networks. Englewood
Cliffs, NJ: Prentice-Hall, 2002.

AMATRIAIN: DOMAIN-SPECIFIC METAMODEL FOR MULTIMEDIA PROCESSING SYSTEMS 1297

[2] M. K. Mandal, Multimedia Signals and Systems. Norwell, MA:
Kluwer, 2002.

[3] R. Earnshaw and J. Vince, Eds., Multimedia Systems and Applica-
tions. New York: Academic, 1995.

[4] S. Hashimoto, Ed., Multimedia Modeling. Modeling Multimedia Infor-
mation and Systems. Singapore: World Scientific, 1995.

[5] D. A. Manolescu, “A dataflow pattern language,” in Proc. 4th Patt.
Lang. Programm. Conf., 1997.

[6] P. Arumi, D. Garcia, and X. Amatriain, “A dataflow pattern language
for sound and music computing,” in Proc. Patt. Lang. Programm.
(PloP’06), 2006.

[7] C. Hylands et al., “Overview of the Ptolemy Project,” Tech. Rep., Dept.
Elect. Eng. Comput. Sci., Univ. California, Berkeley, 2003.

[8] W. Rowe, “Why system science and cybernetics?,” IEEE Trans. Syst.
Cybern., vol. SSC-1, no. 1, pp. 2–3, Nov. 1965.

[9] A. Hall and R. Fagen, “Definition of system,” in Yearbook of the So-
ciety for the Advancement of General Systems Theory. Ann Arbor,
MI: General Systems, 1956.

[10] E. Seidewitz, “What models mean,” IEEE Softw., vol. 20, no. 5, pp.
26–32, Sep./Oct. 2003.

[11] S. J. Meller, A. M. Clark, and T. Futagami, “Model driven develop-
ment,” IEEE Softw., Sep. 2003.

[12] A. G. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model
Driven Architecture: Practice and Promise. Boston, MA: Addison-
Wesley, 2003.

[13] ACM Object Management Group, Unified Modeling Language (UML)
Specification: Infrastructure, Version 2.0 Mar. 2006.

[14] Object Management Group, Meta Object Facility (MOF) 2.0 Query/
View/Transformation Specification Nov. 2005.

[15] H. Knublauch, “Ontology-driven software development in the context
of the semantic web: An example scenario with protege/owl,” in Proc.
Int. Workshop Model-Driven Semantic Web, Monterey, CA, 2004.

[16] V. Devedzic, “Understanding ontological engineering,” Commun.
ACM, vol. 45, no. 4, Apr. 2002.

[17] S. Cook, “Domain-specific modeling and model driven architecture,”
MDA J., pp. 2–10, Jan. 2004.

[18] X. Amatriain, “An Object-Oriented Metamodel for Digital Signal Pro-
cessing With a Focus on Audio and Music,” Ph.D. dissertation, Univ.
Pompeu Fabra, Barcelona, Spain, 2005.

[19] D. M. Buede, The Engineering Design of Systems. New York: Wiley,
1999.

[20] G. Kahn, “The semantics of a simple language for parallel program-
ming,” Inf. Process., pp. 471–475, 1974.

[21] T. M. Parks, “Bounded Schedule of Process Networks,” Ph.D. disser-
tation, Univ. California, Berkeley, 1995.

[22] E. Lee and T. Parks, “Dataflow process networks,” Proc. IEEE, vol. 83,
no. 5, pp. 773–799, May 1995.

[23] H. Storrle, “Semantics and verification of data flow in uml 2.0 activi-
ties,” Electron. Notes Theoret. Comput. Sci., vol. 127, no. 4, 2005.

[24] S. Sauer and G. Engels, “Extending uml for modeling of multimedia
applications,” in Proc. IEEE Symp. Vis. Lang., 1999, pp. 80–87.

[25] D. K. Mellinger, G. E. Garnett, and B. Mont-Reynaud, “Virtual dig-
ital signal processing in an object-oriented system,” in The Well-Tem-
pered Object. Musical Applications of Object-Oriented Software Tech-
nology. Cambridge, MA: MIT Press, 1991, pp. 188–194.

[26] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns—Elements of Reusable Object-Oriented Software. Reading,
MA: Addison-Wesley, 1995.

[27] T. Grotker, R. Schoenen, and H. Meyr, “Unified specification of control
and data flow,” in Proc. 1997 IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP’97), 1997, p. 271.

[28] D. Ziegenbein, K. Richter, R. Ernst, L. Thiele, and J. Teich, “Spi—A
system model for heterogeneously specified embedded systems,” IEEE
Trans. Very Large Scale Integration (VLSI), vol. 10, no. 4, pp. 379–389,
Aug. 2002.

[29] O. Levia and C. Ussery, “Directed control data-flow networks: A new
semantic model for the system-on-chip era,” in Proc. FDL’99, Lyon,
France, Sep. 1999, pp. 548–560.

[30] H. W. van Dijk, H. J. Sips, and E. F. Deprettere, “On context-aware
process networks,” in Proc. . Int. Symp. Mobile Multimed. Appl.
(MMSA’02), Dec. 2002.

[31] M. Geilen and T. Basten, “Requirements on the execution of kahn
process networks,” in Proc. Eur. Symp. Programm. Lang. Syst., 2003,
pp. 319–334.

[32] J. Buck and E. A. Lee, “The token flow model,” in Advanced Topics
in Dataflow Computing and Multithreading. New York: IEEE Com-
puter Society Press, 1994.

[33] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” IEEE Trans.
Comput., vol. 36, no. 1, pp. 24–35, Jan. 1987.

[34] N. Burroughs, A. Parkin, and G. Tzanetakis, “Flexible scheduling for
dataflow audio processing,” in Proc. Int. Comput. Music Conf., 2006,
pp. 79–82.

[35] M. Zelkowitz and D. Wallace, “Experimental validation in software
engineering,” Inform. Softw. Technol., vol. 39, no. 11, Nov. 1997.

[36] T. R. G. Green and M. Petre, “Usability analysis of visual program-
ming environments: A ‘cognitive dimensions’ framework,” J. Vis.
Lang. Comput. vol. 7, no. 2, pp. 131–174, 1996 [Online]. Available:
htpp://citeseer.ist.psu.edu/green96usability.html

[37] X. Amatriain, P. Arumi, and D. Garcia, “Clam: A framework for effi-
cient and rapid development of cross-platform audio applications,” in
Proc. ACM Multimed., 2006.

[38] X. Amatriain, “Clam: A framework for audio and music application
development,” IEEE Softw., vol. 24, no. 1, pp. 82–85, Jan./Feb.
2007.

[39] D. Roberts and R. Johnson, “Evolve frameworks into domain-specific
languages,” in Proc. 3rd Int. Conf. Pattern Languages Programm.,
Monticello, IL, Sep. 1996.

[40] X. Amatriain and P. Arumi, “Developing cross-platform audio and
music applications with the CLAM framework,” in Proc. Int. Comput.
Music Conf., 2005.

[41] D. Garcia, P. Arumi, and X. Amatriain, “Visual prototyping of audio
applications,” in Proc. 2007 Linux Audio Conf., 2007.

[42] X. Amatriain, J. Bonada, A. Loscos, and X. Serra, “Spectral pro-
cessing,” in DAFX: Digital Audio Effects (Udo Zoelzer, ed.). New
York: Wiley, 2002, pp. 373–438.

[43] X. Amatriain, J. Massaguer, D. Garcia, and I. Mosquera, “The CLAM
annotator: A cross-platform audio descriptors editing tool,” in Proc. 6th
Int. Conf. Music Inform. Retrieval, London, U.K., 2005.

[44] S. T. Pope and C. Ramakrishnan, “The create signal library (‘Sizzle’):
Design, issues and applications,” in Proc. Int. Comput. Music Conf.
(ICMC’03), 2003.

[45] S. T. Pope, X. Amatriain, L. Putnam, J. Castellanos, and R. Avery,
“Metamoodels and design patterns in CSL4,” in Proc. Int. Comput.
Music Conf. (ICMC’06), 2006.

[46] S. Bray and G. Tzanetakis, “Implicit patching for dataflow-based audio
analysis and synthesis,” in Proc. Int. Comput. Music Conf. (ICMC’05),
2005.

[47] J. Castellanos, “Design of a Framework for Spatial-Audio Rendering,”
M.S. thesis, Univ. California, Santa Barbara, 2006.

[48] J. Prats, “Blackfinger: Artificial Vision and Hand Recognition System,”
M.S. thesis, Univ. Pompeu Fabra (UPF), Barcelona, Spain, 2006.

[49] K. Mayer-Patel and L. Rowe, “Design and performance of the Berkeley
continuous media toolkit,” in Proc. Multimed. Comput. Network., San
Jose, CA, 1997, pp. 194–206.

[50] P. Ackermann, “Direct manipulation of temporal structures in a multi-
media application framework,” in Proc. ACM Multimedia Conf., 1994.

[51] A. R. François and G. G. Medioni, “A modular middleware flow sched-
uling framework,” in Proc. ACM Multimedia’00, Los Angeles, CA,
Nov. 2000, pp. 371–374.

[52] C. J. Lindblad and D. L. Tennenhouse, “The VuSystem: A program-
ming system for compute-intensive multimedia,” IEEE J. Select. Areas
Commun., vol. 14, no. 7, pp. 1298–1313, Jul. 1996.

[53] R. Willrich, P. D. Saqui-Sannes, P. Senac, and M. Diaz, “Multimedia
authoring with hierarchical timed stream Petri nets and java,” Mul-
timed. Tools Applic., vol. 16, no. 1–2, pp. 7–27, 2002.

[54] G. Tzanetakis and P. Cook, “Marsyas3D: A prototype audio browser-
editor using a large-scale immersive visual and audio display,” in Proc.
Int. Conf. Auditory Display (ICAD), 2001.

[55] P. Cook, “Synthesis toolkit in C++,” in Proc. 1996 SIGGRAPH, 1996.
[56] A. Chaudhary, A. Freed, and M. Wright, “An open architecture for

real-time audio processing software,” in Proc. Audio Eng. Soc. 107th
Conv., 1999, pp. 1–4.

[57] V. Lazzarini, “Sound processing with the SndObj library: An
overview,” in Proc. 4th Int. Conf. Dig. Aud. Effects (DAFX’01), 2001.

[58] M. Young, D. Argiro, and S. Kubica, “Cantata: Visual programming
environment for the khoros system,” Comput. Graph., vol. 29, no. 2,
pp. 22–24, 1995.

[59] T. Lourens, “TiViPE—Tino’s visual programming environment,” in
Proc. 28th Annu. Int. Comput. Softw. Appl. Conf. (COMPSAC’04),
2004, pp. 10–15.

[60] C. Upson et al., “The application visualization system: A computa-
tional environment for scientific visualization,” IEEE Comput. Graph.
Applicat., vol. CGA-9, no. 4, pp. 32–40, Jul. 1989.

1298 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 9, NO. 6, OCTOBER 2007

[61] A. R. François and G. G. Medioni, “A modular software architecture
for real-time video processing,” in Proc. IEEE Int. Workshop Comput.
Vis. Syst., Vancouver, BC, Canada, Jul. 2001, pp. 35–49.

[62] S. S. G. Engels, “Object-oriented modeling of multimedia applica-
tions,” in Handbook of Software Engineering and Knowledge Engi-
neering. Singapore: World Scientific, 2002, vol. 2, pp. 21–53.

[63] V. Zivkovic and P. Lieverse, “An overview of methodologies and tools
in the field of system-level design,” in Proc. Embedded Processor De-
sign Challenges, 2002, pp. 74–88.

[64] J. Sztipanovits, G. Karsai, and T. Bapty, “Self-adaptive software for
signal processing,” Commun. ACM, vol. 41, no. 5, pp. 66–73, May
1998.

[65] S. Zachariadis, C. Mascolo, and W. Emmerich, “The satin component
system-a metamodel for engineering adaptable mobile systems,” IEEE
Trans. Softw. Eng., vol. 32, no. 11, pp. 910–927, Nov. 2006.

Xavier Amatriain studied telecommunications en-
gineering at the Universitat Politecnica de Catalunya
and received the Ph.D. degree in computer science
and digital communication from the Universitat
Pompeu Fabra, Bareclona, Spain.

He has recently joined the Telefonica I+D Re-
search Center, Barcelona, Spain. Previously, he was
Research Director at the CREATE center, University
of California Santa Barbara, where he coordinated
the Allosphere project (http://www.mat.ucsb.edu/al-
losphere). He is also Project Leader and coauthor

of the CLAM Framework. He has authored more than 20 papers in journals
and international conferences. His research interests include multimedia and
signal processing system modeling, music information retrieval, software
engineering, agile methodologies, and open source software development.

