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Abstract

Content processing is a vast and growing field that integrates
different approaches borrowed from the signal processing,
information retrieval and machine learning disciplines. In
this article we deal with a particular type of content pro-
cessing: the so-called content-based transformations. We will
not focus on any particular application but rather try to give
an overview of different techniques and conceptual implica-
tions. We first describe the transformation process itself,
including the main model schemes that are commonly used,
which lead to the establishment of the formal basis for a
definition of content-based transformations. Then we take a
quick look at a general spectral based analysis/synthesis
approach to process audio signals and how to extract features
that can be used in the content-based transformation context.
Using this analysis/synthesis approach we give some exam-
ples on how content-based transformations can be applied to
modify the basic perceptual axis of a sound and how we can
even combine different basic effects in order to perform more
meaningful transformations. We finish by going a step further
in the abstraction ladder and present transformations that are
related to musical (and thus symbolic) properties rather than
to those of the sound or the signal itself.

1. Introduction content and transformations

The term “content processing” has already been around
for a few years (Karjalainen, 1999; Chiariglione, 2000;
Camurri, 1999) but its meaning is still unclear and a matter
of controversy. When we talk about content analysis, content
browsing, content indexing, content processing or content
transformation we are usually addressing the higher-level
information that a signal produced by an audiovisual source
carries within.

Even though the previous pseudo-definition is conserva-
tive in its scope, it already includes a crucial and sometimes
polemical term: higher-level. It is true that this label assumes
that it is being compared to something else, and this some-
thing else is usually the signal processing level. Even so,
what about semantic features that can (more or less directly)
be extracted from the actual signal? Should we consider pitch
as a higher-level feature as opposite to its signal-processing
counterpart, fundamental frequency? How can we distinguish
between the abstraction level implied by some perceptual
feature like loudness and some other with more semantic
load such as genre?

We will use the word “content” for any piece of informa-
tion related to the audio source that is in any way meaning-
ful (that it carries semantic information) to the targeted user.
Thus, the description of that content can be thought of as a
content hierarchy with different levels of abstraction, any of
them potentially useful for some users. In that sense, think
of how different would a content description of a song be
if the targeted user was a naive listener or an expert musi-
cologist. Even a low-level descriptor such as the spectral
envelope of a signal can be thought of as a particular level
of content description targeted for the signal processing
engineer.

On the other hand, when we use the term transformation,
we use it in a different way from how we would use the term
effect. When we talk about an effect, we are focusing on the
result of changing the sound in a particular way. However,
when talking about a transformation, the strength is put on
the change that a particular sound experiments, rather than
on the result. Thus, not every sound can undergo a certain
transformation, yet an effect can be applied on any source
regardless its properties. That is the reason why we use the
word transformation when addressing the “content” level.
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Fig. 2. Transformation process based on an analysis-synthesis model.

Throughout the previous discussion, it has been assumed
that, in order to be able to apply some kind of content trans-
formation, the signal must undergo a previous analysis step.
The goal of this step is to compute features that will then be
relevant in the transformation step.

The first possible scenario is the one represented in Figure
1. The output of the analysis is used as a control to the trans-
formation block. The transformation is thus applied to the
original sound directly. Note that, in this case, the user input
is not used in the transformation chain so the scheme could
be labeled as “unsupervised.” The parameters of the trans-
formation are dynamically adapted to the characteristics of
the input signal.

A very basic example of this kind of signal processor
would be an automatic gain control. Such a system can
reduce or increase its gain depending on the relation between
the input signal and a given threshold. When the signal
exceeds that particular threshold the gain is reduced and the
transformation is said to be a “compressor” (or a limiter if
the slope is smaller than 1/10). On the other hand, if the
signal is below the threshold, the gain is increased and the
transformation is known as an “expander.” One may argue
that this sort of signal analysis is too “low-leveled” to be
included in the category of content-based transformation but
we refer again to the definition of “content” previously intro-
duced. The content description of the signal is being reduced
to just a very simple feature: its level. Anyhow, it is clear that
the transformation depends on the analysis of that particular
feature applied to the incoming signal. But the scheme here

outlined can be applied to any kind of transformation and
using any feature of the sound as a control signal. That is
the idea behind Adaptive Digital Audio Effects (A-DAFx)
(Verfaille & Arfib, 2001).

Most of the transformations implemented in the time-
domain can fit quite well into any of the variations of the
model presented up until now. The implementation of the
processing algorithms is quite straightforward and based on
a sample-by-sample process. Examples of transformations
that can be effectively implemented using these techniques
include those related to effects like delays, chorus, reverbs,
dynamic processors, etc. More complex transformations
such as those based on pitch-shifting or time-stretching may
also be accomplished in the time domain using techniques
like PSOLA (Pitch-synchronous overlap and add) (Dutilleux
et al., 2002).

But sometimes the information that can be immediately
gathered from the signal and its time-domain representation
may not be enough in order to design a particular transfor-
mation. In a content transformation we want to analyze the
signal and extract meaningful features from this analysis step
and the time-segment processing is not well-suited for this
sort of schemes.

In such situations, the analysis step must yield more than
just a set of features to be used as control signals. Thus, in
order to achieve “more interesting” transformations we need
to find a model for the signal in such a way that this inter-
mediate representation is more suitable for applying some
particular processes. Thus, the signal is analyzed, trans-
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Fig. 3. Content description in the form of metadata can be a part of the incoming signal.

formed and then synthesized back (see Fig. 2) (Serra &
Bonada, 1998; Amatriain et al., 2002).

Different analysis-synthesis schemes and methods have
been proposed and are used in different situations yielding
different results. Most of these transformations are aimed at
providing a representation of the signal in a different domain,
namely the frequency domain. Among the most used trans-
forms, there are STFT (Short-time Fourier Transform), DCT
(Discrete Cosine Transform), Wavelets and Haar. The first of
these is by far the most commonly used and will be referred
to later with more detail.

In Verfaille and Arfib, 2001, several transformations were
implemented taking into account frequency information
as well as changes on the analysis and synthesis hop size
and window length. The transformations (generically called
“Adaptive Effects”) are applied in the frequency domain
through a simple phase vocoder implementation that is con-
trolled by features such as the fundamental frequency, the
spectral centroid, a voiced/unvoiced gate (computed using
the autocorrelation of the frame) or the energy (RMS).
Using this sort of transformation scheme, we can implement
effects such as a voiced/unvoiced driven time stretch, or a
robotization whose fundamental frequency is controlled by
the energy of the input sound. All these transformations can
yield a great change in the expressivity of a spoken or sung
voice.

1.1 Content description

Sometimes, the analysis step may be skipped because the
input stream already contains metadata that can be used for
the transformation process. This metadata is called “content
description.” In Figure 3 we illustrate this situation.

An example of such a transformation would be, for
instance, a genre-dependent equalization. By applying some
of the existing genre taxonomies we could add metadata
defining the genre of a given piece of music. The classifica-
tion could be performed either manually or by using a com-
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Fig. 4. Context awareness as a means of control.

bination of a previously existing metadata that included, for
example, author and title. The transformation block would
then implement a basic filtering process that loads different
filtering function templates depending on the genre.

This leads us to another discussion: are there appropriate
formats for metadata description? The answer to this ques-
tion is two-fold. On the one hand, some proprietary formats
are available, most of them focusing on a particular applica-
tion. On the other hand, some committees are also aiming at
providing suitable standards for multimedia content descrip-
tion, and that obviously include audio and music. Maybe the
most feasible effort is that put forward by the MPEG com-
mittee in its MPEG-7 standard (Manjunath et al., 2002).
According to Martinez (2002): “MPEG-7, formally named
“Multimedia Content Description Interface,” is a standard for
describing the multimedia content data that supports some
degree of interpretation of the information’s meaning, which
can be passed onto, or accessed by, a device or a computer
code. MPEG-7 is not aimed at any one application in
particular; rather, the elements that MPEG-7 standardizes
support as broad a range of applications as possible.” Meta-
data will be available in a “readable” textual format, namely
XML, and in a “more efficient” binary format.
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Fig. 5. User inputs to the transformation thread.

Arguably, even another form of content transformation
is that based on context awareness (see Fig. 4). By context
awareness we mean the ability of a particular system of
becoming “aware” of its surrounding world. In that sense, a
dynamic processor whose threshold depends on the noise-
level of the room would be an example of such a scheme.

Furthermore, context awareness is very much related to
user profiling. A transformation system can respond differ-
ently according to the loaded user model. This user model
can include information about user preferences as well as
contextual information such as whether the user is happy or
not (Chai & Vercoe, 2000).

1.2 User interaction

Even in such a simple example as the one of the automatic
gain control, the “user input” must somehow be taken into
account (the threshold and the slope must somehow be set).
In that sense, the previous scheme must be modified in order
to include this new input. A first version of the new scenario
feeds this information directly into the analysis process so
the user can control the settings of this particular step. The
influence of the user’s actions is directly on the features
extracted from the signal.

Furthermore, the user may be able to directly interact with
the output of the analysis process and so change the charac-
teristics of the sound features before using them as a control
of the actual transformation. Now, the influence of the user’s
actions is on the mapping function between the features
extracted from the signal and the transformation control
parameters. For example, we can take into account N features
to control M parameters of the transformation, or more
simply (using some sort of linear combination) take into
account N features to control a single parameter of the trans-
formation process. This way, the behavior that a given trans-
formation will have on a particular sound is much more
predictable and coherent to the characteristics of the sound
itself. Yet another example of the interaction of the user in
the transformation process is at the previously introduced
stage of linear mapping between features and transformation
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Fig. 6. High to low-level mapping at a control level.
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Fig. 7. High to low-level mapping at the analysis step.
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control. Non-linearities, such as smoothing to avoid rapid
transitions or truncation of the feature curve in order to select
only the part of interest, may be introduced and directly con-
trolled by the user’s input.

The user input can also be directly fed to the transforma-
tion block in order to change the parameters of the actual
transformation process. The influence of the user’s action is
now on the transformation controls (which will be generally
different from those controlled by the extracted features). The
following diagram illustrates the different possible user-
inputs to the transformation thread.

But, as we already mentioned, when we talk about content
processing, our focus is somehow shifted towards the final
user of the system. The scenarios and examples of user input
seen up until now suppose the user is still interacting with
the transformation at a low-level. Thus, the user is seen more
as an algorithm tweaking signal engineer than as a musician
or artist.

But, in most cases, when we talk about content-based
transformations, we imply that some sort of mapping
between low-level parameters and higher-level ones is being
performed. The aim of such a mapping is to group and relate
features in such a way that they become meaningful for the
targeted user. Still, the level of abstraction of the final con-
trols has a lot to do with the profile of that targeted user. An
expert user may require low-level, fine-tuning while a naive
user will prefer high-level, easy to grasp parameters.

In the simplest case, the mapping between low and high-
level parameters is done at the control level. The user input
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is processed and mapped to the low-level parameters affected
by that particular control (see Fig. 6).

But this mapping can already be performed at the analy-
sis stage. Thus, these higher-level features are analyzed and
extracted from the sound in such a way that the user can inter-
act with them in a meaningful way (see Fig. 7). We will see
this process in more detail in the following sections.

It is clear that the choice of a good mapping strategy is
absolutely necessary if we aim at providing a user-oriented
content transformation. Many studies have focused on
mapping human gestures to low-level synthesis parameters
(see Butch et al., 1997; Schoner et al., 1998; Todoroff, 2002;
Wanderley et al., 2000, for example). Our focus here may
seem different (because we are not dealing with physical ges-
tures) but it is not so. The intention of a sound designer or
musician using a transformation from a high-level approach
can in many ways be seen as a musical gesture. Indeed, it
is also a so-called haptic function, that is a low-frequency
(compared to the frequencies in the sound signal itself)
change in the control values.

2. Spectral models

The frequency domain representation of a sound is in many
cases closer to our perceptual understanding than its time
domain counterpart. Of the four main perceptual features of
a sound (pitch, timbre, loudness, and duration), the first two
are better interpreted in the frequency domain.

Many interesting content-based transformation frame-
works or applications are based on one of the different
existing spectral model (see Rodet et al., 1995; Arfib et al.,
2002, or any of the applications later explained in this
article).

As already mentioned, the most used transform is the
STFT, and to be more precise, the set of fast algorithms that
implement it and are generically known as FFT. The FFT
yields a sampled complex spectrum at its output. The number
of complex values corresponds to half the number of samples
at its input, spread over half the original sampling rate.

We can already analyze a number of features from
this spectrum and implement useful transformations. Exam-
ples of transformations that can be to some extent imple-
mented after this step are: time scaling, pitch shifting,
cross-synthesis . . .

But, using the output of the STFT, The Sinusoidal model
represents a step towards a more flexible representations
while compromising both sound fidelity and computing time.
It is based on modeling the time-varying spectral character-
istics of a sound as sums of time-varying sinusoids. The input
sound s(f) is modeled by,

s(r)= Z, A,.(t)cos[6, (1)] )

where A4,(t) and 6,(¢) are the instantaneous amplitude and
phase of the 7" sinusoid, respectively.

To obtain a sinusoidal representation from a sound, an
analysis is performed in order to estimate the instantaneous
amplitudes and phases of the sinusoids. This estimation is
generally done by first computing the STFT of the sound,
then detecting the spectral peaks (and measuring the magni-
tude, frequency and phase of each one), and finally organiz-
ing them as time-varying sinusoidal tracks.

Sinusoidal Modeling is a quite general technique that
can be used in a wide range of sounds and offers a gain in
flexibility compared with the direct STFT implementation
(McAulay & Quatieri, 1986).

Furthermore, the Sinusoidal plus Residual model can
cover a wide “compromise space” and can in fact be seen as
the generalization of both the STFT and the Sinusoidal
models. Using this approach, we can decide what part of the
spectral information is modeled as sinusoids and what is left
as STFT. With a good analysis, the Sinusoidal plus Residual
representation is very flexible while maintaining a good
sound fidelity and the representation is quite efficient. In this
approach, the Sinusoidal representation is used to model only
the stable partials of a sound. The sum of these sinusoid is
the called Sinudoidal Component. The Residual Component,
or its approximation, models what is left, which should
ideally be a stochastic component. It is less general than
either the STFT or the Sinusoidal representations but it
results in an enormous gain in flexibility (Serra, 1989; Serra
& Smith, 1990).

The input sound s(7) is modeled by,

=3 4, o8, O] () @

where A4,(f) and 6.(f) are the instantaneous amplitude and
phase of the " sinusoid, respectively, and e(?) is the noise
component at time # (in seconds).

The sinusoidal plus residual model assumes that the sinu-
soids are stable partials of the sound with a slowly changing
amplitude and frequency. With this restriction, we are able to
add major constraints to the detection of sinusoids in the
spectrum and omit the detection of the phase of each peak.
The instantaneous phase that appears in the equation is taken
to be the integral of the instantaneous frequency w,.(f), and
therefore satisfies

6,()=J . (2)dz @)

where w,(7) is the frequency in radians, and 7 is the sinusoid
number. When the sinusoids are used to model only the stable
partials of the sound, we refer to this part of the sound as the
deterministic component.

Within this model we can either leave the residual signal,
e(?), to be the difference between the original sound and the
sinusoidal component, resulting into an identity system, or
we can assume that e(f) is a stochastic signal. In this case,
the residual can be described as filtered white noise,

e(t) = [ (e, Dulr)dr 4)
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where u(f) is white noise and /(¢,7) is the response of a time
varying filter to an impulse at time ¢. That is, the residual is
modeled by the time-domain convolution of white noise with
a time-varying frequency-shaping filter.

The implementation of the analysis for the Sinusoidal
plus Residual Model is more complex than the one for the
Sinusoidal Model. Figure 8 shows a simplified block-
diagram of this analysis.

The first few steps are the same than in a sinusoidal-only
analysis. The major differences start on the peak continua-
tion process since in order to have a good partial-residual
decomposition we have to refine the peak-continuation
process in such a way as to be able to identify the stable
partials of the sound. Several strategies can be used to
accomplish this. The simplest case is when the sound is
monophonic and pseudo-harmonic. By using the fundamen-
tal frequency information in the peak continuation algorithm,
we can easily identify the harmonic partials.

The residual component can be obtained by (a), directly
substracting the generated sinusoidal spectrum from the FFT
transform of the original signal as depicted in Figure 8 or by
(b) first generating the sinusoidal component with additive
synthesis, and then subtracting it from the original waveform.
This is possible because the phases of the original sound are
matched and therefore the shape of the time domain wave-
form preserved. A spectral analysis of this time domain
residual is done by first windowing it, window which is inde-
pendent of the one used to find sinusoids, and thus we are
free to choose a different time-frequency compromise. An
amplitude correction step can improve the time smearing
produced in the sinusoidal subtraction. Then the FFT is com-
puted and a fitting curve is applied to the magnitude spec-
trum to approximate the resulting spectrum. The spectral
phases might be discarded when the residual is a stochastic
signal.

3. Feature extraction

The accomplishment of a meaningful parameterization for
content-based sound transformation applications is a difficult
task. We want a parameterization offering an intuitive control
over the sound transformation process. Our particular model
should grant access to most of the perceptual and contextual
attributes of a sound.

The extraction of such attributes should be performed in
such a way that, based on our model, we should be able to
implement transformations that modify only one of those
features without affecting the rest. The key point is thus to
extract features that are as much as possible decorrelated
from the others so as to allow their transformation without
affecting other perceptually meaningful features of the
sound. Most of the features that we can obtain from a sound
are information attributes that describe its characteristics and
have only found applications in the analysis and classifica-
tion of sounds. They are still of little relevance for designing
transformations although some of them have already found
use as perceptual-based controls for other transformation
blocks. In section 5.7, for example, we introduce a Gender
Change. It might be of interest for some applications to have
a gender control in a vocal multi-effects unit to set the degree
of masculinity or femininity of a given voice.

To that aim, one can distinguish at least three levels of
abstraction (extraction) from the signal: at any point of the
signal, in small arbitrary regions (i.e., frames) and in longer
pre-segmented regions.

3.1 Instantaneous descriptors

The set of features that can be extracted at any point in the
signal are called instantaneous descriptors. In the case of a
time domain representation, most of the useful instantaneous
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values that can be computed are related to the amplitude or
energy of the signal.

If we are dealing with a frequency-domain representation
many spectrally-related instantaneous features, such as the
spectral centroid or the spectral tilt, can be computed on a
given point. Note that, as explained latter, a given spectrum
does not have an associated time duration, just a time asso-
ciated with the middle of the analysis frame. In any case, and
to be more precise, one should consider these descriptors as
“nearly instantaneous” as they are not associated to a point
in time of the signal but rather to a small region or frame.

3.2 Segmentation

An important step towards a musically useful parameteriza-
tion is the segmentation of a sound into regions that are
homogeneous in terms of a set of sound attributes. The goal
is to identify regions that, using the signal properties, can
then be classified in terms of their content. This way we can
identify and extract region attributes that will give higher-
level control over the sound.

A useful segmentation process applied to a monophonic
source divides a melody into notes and silences and then each
note into an attack, a steady state and a release regions. Attack
and release regions are identified by the way the instantaneous
attributes change in time and the steady state regions are
detected by the stability of these same attributes. Global at-
tributes that can characterize attacks and releases refer to the
average variation of each of the instantaneous attributes, such
as average fundamental frequency variation, average ampli-
tude variation, or average spectral shape change. In the steady
state regions, it is meaningful to extract the average of each
of the instantaneous attributes and measure other global
attributes such as time-varying rate and depth of vibrato.

Sound segmentation has proven important in automatic
speech recognition and music transcription systems. For our
purposes it is also very valuable as a way to apply region
dependent transformations. For example, the time stretching
algorithm introduced in section 5.3 detects regions with tran-
sients in order to preserve their perceptual singularity.

The techniques originally developed for speech (Vidal &
Marzal, 1990), based on Pattern-Recognition, Knowledge-
Based or Neural Network methodologies, start to be used in
music segmentation applications (Rossignol et al., 1999).
Most of the approaches apply classification methods that start
from sound features, such as the ones described in this paper,
and are able to group sequences of frames into predefined cat-
egories. No reliable and general-purpose technique has been
found. Our experience is that we need to narrow down the
problem to a specific type of musical signal or to include a
user intervention stage to guide the segmentation process.

3.3 Region attributes

Once a given sound has been segmented into regions we can
study and extract the attributes that describe each one. Most

of the interesting attributes are simply the mean and variance
of each of the frame attributes for the whole region. For
example, we can compute the mean and variance for the
amplitude of sinusoidal and residual components, the funda-
mental frequency, the spectral shape of sinusoidal and re-
sidual components, or the spectral tilt.

Region attributes can be extracted from the frame attrib-
utes in the same way that the frame attributes are extracted
from the frame data. The result of the extraction of the frame
and region attributes is a hierarchical multi-level data struc-
ture where each level represents a different sound abstrac-
tion. From several sound representations it is possible to
extract the type of attributes mentioned above. The critical
issue is how to extract them in order to minimize interfer-
ences, thus obtaining, as much as possible, meaningful high-
level attributes free of correlations.

The sound transformation approaches exemplified in
this article are based on a spectral-based analysis/synthesis
framework. For the feature extraction part, we first identify
instantaneous attributes and their derivatives in the frequency
domain, then we segment the sound, and finally we can
extract region attributes.

3.4 Extracting attributes from the Sinusoidal plus
Residual model

As already mentioned, it is common practice to extract many
of the features of an audio signal from a frequency domain
analysis. We will now concentrate on the extraction of attrib-
utes from the Sinusoidal plus Residual model described in
section 2.

Some of the basic instantaneous attributes of the Sinu-
soidal plus Residual model at the frame level are: amplitude
power of sinusoidal and residual components, total amplitude
power, fundamental frequency, spectral shape of sinusoidal
and residual components, harmonicity and spectral centroid.
These attributes are obtained at each frame using the infor-
mation that results from the basic Sinusoidal plus Residual
analysis and not taking into account the data from previous
or future frames.

The power of the sinusoidal component is the sum of the
power of all harmonics of the current frame expressed in dB,

1
Pt = 101ogm(2afj (5)
i=1
where a; is the linear amplitude of the ith harmonic and 7 is
the total number of harmonics found in the current frame.
The power of the residual component is the sum of the
absolute values of the residual of the current frame expressed
in dB. This amplitude can also be computed by adding the
frequency samples of the corresponding power spectrum,

M-1
PRtotal = 1010g10(z |x2R (}’I)l)
n=0
N-1

= 101ogm( |X2R(k)|) (6)

k=0
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where xx(n) is the residual sound, M is the size of the frame,
Xz(k) is the spectrum of the residual sound, N is the size of
the magnitude spectrum and £ is the spectral bin index.

The total power of the sound at the current frame is the
sum of its absolute values expressed in dB. It can also be
computed by summing the power of the sinusoidal and resid-
ual components,

M-1
P;otal = 1010g10(z |x2(n)|)

n=0

N-1
= 101og10(2 |x? (k)|)
k=0
I

=1010g10(2a2i +Nz_l|X2R(k)|) (7

i=1

where x(n) is the original sound and X(k) is its spectrum.

The fundamental frequency is the frequency that best
explains the harmonics of the current frame. Many different
algorithms can be used to compute the fundamental (see
Gomez et al., 2002 in this same issue) but a reasonable
approximation can be the weighted average of all the nor-
malized harmonic frequencies,

NS, a
2T (8)
i=1 !

where f; is the frequency of the ith harmonic peak output from
the proposed spectral analysis (see Fig. 8).

The spectral shape of the sinusoidal component is the
envelope described by the amplitudes and frequencies of the
harmonics, or its approximation,

SShape:{(fl’al)(fzaaz)-H(flﬂal)} (9)

The spectral shape of the residual component is an
approximation of the magnitude spectrum of the residual
sound at the current frame. A simple function is computed
as the line segment approximation of the spectrum,

Rshape ={e,,e,,...,e,,....ex/} =
max[|X; (gM + k)] (10)

where k = -M/2, -M/2+1, ...,..., M/2 — 1, and M is the
number of frequency samples used for each calculation of a
local maximum. Other spectral approximation techniques
can be considered depending on the type of residual and the
application.

The computation of many attributes depends on whether
the given sound is harmonic or not. Thus, an analysis of the
harmonicity of the sound must be performed. A possible way
of computing this coefficient is given by:

a;

Harm=i|ﬁ—(F0Xi)| - (11)

a

i=1 1

where A(fi-, h) denotes the amplitude of the 4™ harmonic in
the spectrum computed at frame fr. Note that in the pre-

vious formula, a value close to 0 will mean that the sound is
harmonic (value of 0 will only be possible in synthetic
sounds).

Once the analyzed sound has been categorized either as
harmonic or inharmonic, different formulas can be used to
compute a given descriptor. In the case of the spectral cen-
troid (Petters et al., 1999), for instance, for harmonic sounds
the computation is given by:

1
z fixXa;
Hcentroid = 2—— (12)

1
a

=11

whereas for inharmonic sounds the centroid is computed
using the whole spectrum

N-1
Z fi Xa,
Icentroid =*=2——— (13)

N-1
a
k=0 K

k . . . .
where f, = IN X SR, k is the spectral bin index, N is the size

of the spectrun and SR is the sampling rate. (The centroid,
which is here computed using the amplitude of the spectral
bins or harmonics, can also be computed using energy
instead.)

Other features that can be extracted from the Sinusoidal
plus Residual model and that have found applications in
some fields are: the number of sinusoids, energy of any of
the components, spectral tilt, noisiness, odd/even partial
ratio, attack harmonic coherence, derivative or relative deriv-
ative of any instantaneous attribute, spectral flux, attack, and
release times.

The frame-to-frame variation of each attribute is a useful
measure of its time evolution, thus an indication of changes
in the sound. It is computed in the same way for each
attribute,

A Val(l)-Val(l-1)

H/SR (14)

where Jal(l) is the attribute value for the current frame,
Val(I — 1) is the attribute value for the previous one and H
is the sample distance from one frame to the next (hop-size)
and SR the sampling rate.

Some implementations of frame to frame variation attrib-
utes though, use special computations that slightly differ
from the general formula. In Petters et al. (1999), for
example, the frame-to-frame variation of the spectral shape
for harmonic sounds is computed using the following
formula:

iA(fr —1,h)*A(fir,h)
Hsv(fi)=—="

- \/zzz(ﬁﬂ—l,h)\/;/lz(ﬁ,h)

(15)



Content-based transformations 103

4. Perceptually adapted features

Up until this point, we have extracted and computed features
that are directly related to the signal-domain characteristics
of the sound and, although they may have a perceptual
meaning, they are not taking into account the importance of
the listener’s perceptual filter.

In that sense, for example, it is well known that the ampli-
tude of the sound is not directly related to the sensation of
loudness produced on the listener, not even in a logarithmic
scale (see Moore et al., 1997). Fletcher and Munson (1933)
established a set of equal-loudness curves called isophones.
The main characteristic of these curves is that the relation
between a logarithmic physical measure and its psychoa-
coustical counterpart is a frequency dependant function.
Although this curves have proven only valid for the stable
part of pure sinus (more than 500 ms), they have been used
as a quite robust approximation for measuring loudness of
complex mixtures (Pfeiffer, 1999).

The physical measure related to the psychoacoustical
sensation called loudness is the sound pressure level (SPL),
measured as:

L=20log,, 2-[d (16)
0
where p, is the sound pressure level at the threshold of
audition.

The problem of automatically relating this feature to sub-
jective loudness has been addressed in several ways. See
Pfeiffer (1999) for examples.

Also, and in a different sense, the spectrum of a signal,
as the one computed by the STFT, could be perceptually
adapted by taking into account the logarithmic frequency
response of the human ear. That would lead us to the use
of some sort of constant-Q transform scheme such as the
Wavelet transform. Wavelets use different window sizes
depending on the frequency range being analyzed. Thus, the
spectral resolution is also frequency dependent, resembling
the response of the human ear (Brown, 1991).

Although this perceptual adaption is theoretically inter-
esting, it has found little application so far. The computation
cost and complexity of perceptual features does seldom pay
for the increase of naturalness that can be gained in the
transformation. A good mapping scheme is usually enough.
Nevertheless, not many conclusions have been put forward
on this area of perceptual adapted sound transformations and
it is, surely, a field to invest efforts in the near future.

5. Main axes in a sound transformation

The main perceptual axes in a sound are (arguably): timbre,
pitch, loudness, duration, position and quality. Ideally, we are
looking for transformations that can change the sound in one
of its dimensions without affecting any other.

In the following sections we will briefly give some ex-
amples of transformation engines that have been developed

with that idea in mind. Regarding pitch, we will present ways
of transposing a sound without affecting its timbre. We will
then outline the basic characteristics of the perceived loud-
ness and some automatic systems that simulate its computa-
tion. Then, we will talk about time-scaling, which is,
changing the duration of a sound without affecting its pitch
or its timbre. We will also mention the main characteristics
of Spatialization, which is the recreation of the sensation of
space and location by artificial means. Another important
axis is “sound quality.” Different parameters are involved in
this axis but maybe the clearest one is the signal to noise
ratio, for that reason when talking about modifying the sub-
jective quality of a given source, we will be talking about
denoising algorithms. Finally, in the case of timbre, we will
introduce the concept of timbre space and give some exam-
ples of sound morphing engines.

We will finish this section by giving some examples of
how primitive transformations in any of these axes can be
combined in order to create even more musically meaning-
ful effects.

5.1 Pitch

Pitch shifting is an effect that aims at transposing the
original pitch of a sound without affecting other perceptual
features, namely its timbre and its duration. But, the first dif-
ficulty that we encounter is to define precisely what we mean
by pitch.

Pitch can be defined as the frequency of the sinusoid that
can be consistently matched by listeners to the sound being
analyzed (Hartman, 1996). But although the term pitch
should be reserved when talking about perceptual issues, in
many practical applications the signal-domain concept of
fundamental frequency has a very similar meaning. For this
reason, and only in the context of this article, we do not make
much distinction between the two terms. In fact, most pitch
shifting systems are actually shifting the fundamental fre-
quency and the harmonics of a sound.

The basic approach to implement a pitch-shifting algo-
rithm is to transpose the spectrum of a sound without affect-
ing its spectral shape (feature directly related to the timbre
of a sound). A quite intuitive way to accomplishing this is by
using the sinusoidal plus residual model. Once we have sep-
arated both components of the sound, we extract the spectral
shape of the sinusoidal one, we multiply the frequency of
every partial by a given factor, and we apply again the orig-
inal spectral shape. A similar procedure may (or may not) be
applied to the residual. (Of course, if the residual component
does not need to be treated separately, other analysis-
synthesis techniques, such as PSOLA or Phase Vocoder, may
be used).

5.2 Loudness

As already mentioned in section 4, extracting this perceptual
descriptor using an automatic extraction process is already a
difficult task.
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A further problem we can encounter is the gain introduced
by the recording chain. Thus, when we analyze a sound file
stored in our hard disk, we have no way of effectively
measuring the loudness of the original sound, unless we
have access to the settings of all the devices used in the
original recording (microphone, preamplifier, mixer, com-
puter soundcard, . . .).

We can overcome this problem by facing the fact that any
possible transformation applied in the digital domain will be
dealing with relative and non-absolute loudness values. In
any case, the implementation of a loudness scaling effect
should be based on a logarithmic scale.

But loudness is also used in a musical sense in order to
represent the sound level of an acoustical instrument. The
mechanisms that relate the actions of a player with the sound
level produced by a given instruments are usually so complex
that seldom this feature can be decorrelated from others such
as timbre. Thus, the difference in sound between playing a
soft and a loud note in an instrument is not only its sound
level.

In the case of a piano, for example, in Sola (1997) a trans-
formation was implemented in order to obtain all possible
musical loudness (dynamics of a note) out of a single previ-
ously analyzed note. It was concluded, that the most feasible
implementation was based on taking the highest possible
dynamic as a starting point. Then, it is “just” a matter of sub-
tracting the spectral information that is not needed to obtain
the notes that have lower dynamic values.

For the case of the piano it was concluded that three dif-
ferent aspects of the spectral representation of the original
sound needed to be controlled in order to apply that trans-
formation in an effective and natural way. These are: the
overall amplitude, the amplitude of the residual component
(percussiveness of the attack) and the spectral shape of the
sinusoidal sound (brightness).

5.3 Duration

Time-scaling an audio signal means changing the length of
the sound without affecting other perceptual features, such
as pitch or timbre. Many different techniques, both in time
and frequency domain, have been proposed to implement this
effect. Some frequency domain techniques yield high-quality
results and can work with large scaling factors. However,
they are bound to present some artifacts, like phasiness, loss
of attack sharpness and loss of stereo image. In this section
we will present a frequency domain technique for near loss-
less time-scale modification of a general musical stereo mix
(Bonada, 2000).

The general block diagram of the system is represented in
Figure 9. It is important to remark that the frame rate used
in both the analysis and synthesis modules is the same, as
opposed to the most broadly used time-scale techniques in
which a change of frame rate in synthesis is used in order to
achieve the effect. Therefore, in some cases an analysis frame
is used twice (or more) while on other cases some frames
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Fig. 9. General diagram of the time stretching system.
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are never used. This technique will not add any artifacts, pro-
vided the frame size we use is small enough and the sound
does not present abrupt changes in that particular region.

In Figure 10, a more detailed block diagram of the time-
scale module is shown. The analysis frames (AF,), contain-
ing the spectrum amplitude and phase envelopes, are fed to
the time-scaling module. This module performs a peak detec-
tion and a peak continuation algorithm on the current and
previous (Z™") amplitude envelopes. These peaks are used as
inputs to the spectrum phase generation module. Note that
the time-scale module only changes the phase, leaving the
spectral amplitude envelope as it is.

The usage of the same frame rate in analysis and synthe-
sis allows us to suppose that the phase variation of each peak
between two consecutives synthesis frames is the same as in
the analysis frames.

The phase vocoder approach for time scaling results into
very well-known artifacts. In this section we will describe
each of these problems and the solution that the implemen-
tation we are proposing can provide.

In the phase vocoder implementation, the phase of each bin
advances at different speed. This introduces a loss of peak’s
phase coherence that is known as phasiness. To avoid this
problem we can apply the original relative behavior of the
phase around the peak. Following Laroche and Dolson (1997)
each peak location subdivides the spectrum into a different
region, with a phase related to that of the peak. The phase
around each peak is obtained by applying the delta phase func-
tion of the original spectrum phase envelope (see Fig. 11).

Another typical artifact of the phase vocoder approach is
the smoothing of the attack transients. A possible solution is
to modify the sinusoidal plus residual model in order to have
a specific model for the transients (Verma & Meng, 1998).
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Another possible approach is to not time-scale the input
signal on this kind of regions so that the original duration is
respected. Consequently, and in order to preserve the overall
scaling factor, a greater amount of scaling should be applied
to surrounding regions.

In order to apply the previous technique, it is necessary to
detect attack transients of the sound in an unsupervised
manner. The computation of relative changes of energy along
several frequency bands can be used for that purpose. A low
frequency band could, for example, detect sharp bass notes,
while a high frequency band could be set to detect hits of a
crash cymbal.

A basic property of the STFT implies that it is desirable
to have long windows in order to achieve a high frequency
resolution, but conversely it is also desirable to have short
windows so to achieve a better temporal resolution. The solu-
tion proposed is to use parallel windowing, that is, several
analysis channels. Obviously, the window should be longer
for low frequencies than for high frequencies. The peak
detection process is applied to each of the channels while the
peak continuation takes care of the desired channel frequency
cuts, so it can connect peaks of different channels. Then the
time-scale module fills the spectrum of all the channels and
applies a set of parallel filters H,(f) that must add up to a
constant (all pass filter).
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If the cutoff frequency of a channel was close to a spec-
tral peak, this peak would be split into two different channels
and we would be introducing artifacts. For this reason, we
need to provide our system with time-varying frequency cuts.
Each frequency cut is set to the middle point between the two
closest to the original frequency cut (see Fig. 12).

In the case of stereo signals, if we process each of the two
channels independently, most of the stereo image is bound
to be lost. This artifact is mainly due to the fact that the
time-scale process changes the phase relation between
the two channels. Therefore, if we want to keep the stereo
image, it is necessary to preserve the phase and amplitude
relation between left and right channels. In the system pre-
sented, the amplitude relation is already preserved because
the spectrum amplitude is kept unchanged. On the other
hand, the phase relation is forced to be the desired one, bin
by bin.

The system here presented can deal with time varying
scaling factors with no loss of quality tradeoff. The only sig-
nificant change is that the time increments of the synthesis
frames expressed in the input signal are not constant. The
application of time-varying tempo variations opens up many
new and interesting perspectives. The system could be easily
adapted and used for alignment and synchronization of two
sound sources. It could be also used to control the tempo of
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a piece of music, like a conductor does, and by using a score
following system and audio accompaniment could be syn-
chronized in real-time with a live performance.

5.4 Space

Spatial location is often referred to as another basic dimen-
sion in audio processing. It is far beyond the scope of
this paper to go into the details of the many techniques that
have been developed for sound spatialization. See Rocchesso
(2002) for an introduction to spatial effects with practical
applications.

It is interesting to note, though, that some of the currently
used techniques for spatialization rely on the content of the
audiovisual material in order to process the audio signal and
decide to what channel the signal has to be sent to. In this
sense, it is interesting to mention MPEG-4’s AudioBIFS
(Binary Format for Scenes) that takes this idea a step beyond,
defining “virtual scenes” made up of sound objects that orga-
nized through scene graphs where the nodes represent the
actual content (Scheirer et al., 1998).

5.5 Quality

Since the very beginning of information technology, the most
obvious transformation that was pursued when processing a
sound was to reduce the noise that somehow had been added
to the original source. The problem, though, is that when the
sound is processed no information is available about the
source and only some hypothesis can be made about the noise
signal. Thus, the feasible goal in this type of situation is to
increase the signal-to-noise ratio (SNR) since the complete
elimination of the noise is a rather impossible objective in
most cases.

For that reason, most of the traditional systems are based
on filtering schemes or statistical processing algorithms that
aim at modeling the noise and the signal source.

Although a filter might be implemented in the time
domain by convolving the impulse response of the filter with
the signal most of the denoising systems are implemented
in a frequency domain where the filter is implemented by
multiplying the frequency response of the filter with the
transform of the signal. More recently, wavelets and the

Karhunen-Loeve (Mittal et al., 2000) transform have been
used for optimizing denoising algorithms.

As far as we are aware, the only “content-dependant”
denoising algorithms that have been implemented are those
used in speech transmission systems. These algorithms can
take advantage of the content in the sense that they use
models to identify the spoken signal so to get rid of the noisy
component.

Even so, more sophisticated techniques that include
machine learning techniques have already been used. In Di
Giura et al. (1997), for example, a denoising technique based
on fuzzy rules was implemented.

5.6 Timbre

Maybe the most obvious dimension we think when dealing
with content transformation is the timbre of a given sound.
Timbre is defined as all those characteristics that distinguish
two sounds of the same pitch, duration and loudness. As a
matter of fact, the psychoacoustical sensation timbre depends
on many characteristics of the signal such as its instantaneous
spectral shape and its evolution, the relation of its harmon-
ics or some other features related to the attack, release and
temporal structure.

On the other hand, timbre is hardly decorrelated from
other features in music. For example, when an instrument
plays two notes at different loudness or pitches, the timbre is
very much likely to vary accordingly.

Ideally, we would like to have some sort of representation
of timbre that allowed transforming continuously from one
timbre to a different one. For example, we would like to grad-
ually transform the sound of a trumpet into that of a violin.
And even more, we would like to be able to define spaces
where a given point has intermediate features corresponding
to each of the axis.

This leads us to the idea of Timbre Space. This control
structure has been used in many different ways taking a
variety of forms and even of labels but it is commonly
acknowledged that it was first named in Wessel (1979).

In Amatriain et al. (1998), we implemented a timbre space
control structure. The axes of the space were user-defined, so
each of the dimensions corresponded to a feature the instru-
ment designer decided could be perceptually important. The
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outputs of an SMS (Spectral Modeling Synthesis) (Serra,
1998) analysis were then positioned in the desired spatial
coordinates. Intermediate values were obtained by interpo-
lating values of spectral features. As shown in the next figure,
a timbre space is a control structure that can be also used to
control features of the sound that are not essentially timbral
but that influence it, such as pitch or loudness. In the partic-
ular example illustrated, a note with intermediate loudness
and pitch (C4, mf) is obtained by interpolating spectral data
from previously analyzed notes. (From Amatriain et al.,
1998).

An example of a perceptual derived timbre space can be
found in the Timbre Descriptor included in the MPEG-7 stan-
dard (Petters et al., 1999). In that case, the issue was not to
find the most interesting dimensions for transforming the
timbre of a given instrument but rather to use those dimen-
sions in a search and retrieval scenario. Two different spaces
were derived from psychoacoustical experiments (Krumbhals,
1989; McAdams et al., 1995; Lakatos, 1999): one for per-
cussive and another for harmonic instruments. In all experi-
ments, listeners were asked to perform similarity measures
on pairs of sounds. Multidimensional Scaling (MDS) was
then used to translate results into a low-dimensional space.
Then the descriptor that best explained each axis was chosen
and a mathematical relation between axis position and
descriptor value was derived by a linear-regression method.
Finally, position and distance methods were used for justify-
ing independence of descriptors and the use of an euclidian
distance and for estimating the signal descriptors coefficients
in the distance measure. (Peeters, 2000).

In the case of the percussive instruments a two dimen-
sional space was used. The first dimension, corresponding to
the perception of temporal characteristics included both log
attack time and temporal centroid, the second dimension was
based only in one descriptor, spectral centroid. On the other
hand, a four dimensional space was derived for harmonic
instruments. One dimension corresponded to the temporal
perception and was only based on the log attack time while
the other three included spectral parameters, namely spectral
centroid, spectral deviation, spectral spread and spectral vari-

ation (all of them computed on the harmonic component of
the related spectrum).

Morphing

Out of the interpolation of data resulting from two or more
analyses of audio signals, we can create the so-called sound
hybrids or morphs. Most of the morphing techniques are
based on the interpolation of sound parameterizations result-
ing from analysis/synthesis techniques, such as the Short-
time Fourier Transform (STFT), Linear Predictive Coding
(LPC), Cepstrum or Sinusoidal Models. Morphing is not
only applied on the timbre related attributes of the sounds
but can be used to obtain different characteristics of a given
source in a dimension where a “traditional” transformation
would be hard to accomplish. It is in the timbre domain
where this technique yields results impossible to obtain using
other transformation techniques. That is the reason why this
technique has been included in this section and an example
of an application that uses it extensively is now given.

An automatic impersonating system that allows the user
to morph in real-time his/her voice attributes (such as pitch,
timbre, vibrato and articulations) with the ones from a pre-
recorded singer (which from now on we will refer to as
target) was developed (Cano et al., 2000) for a karaoke type
application. Such particular case of morph is after control-
ling the resulting synthetic voice by mixing some character-
istics of the two singing voice signals.

Figure 15 shows the general block diagram of the voice
impersonator system. The system relies on two main tech-
niques that define and constrict the architecture: the SMS
framework and a Hidden Markov Model based Speech Rec-
ognizer (ASR). The SMS implementation is responsible of
providing a suitable parameterization of the singing voice
in order to perform the morph in a flexible and musically-
meaningful way. On the other hand, the SR is responsible
of matching the singing voice of the user with the target.

The system requires the phonetic transcription of the
lyrics, the melody as MIDI data, and the actual recording to
be used as the target audio data, which is usually the target’s
performance of the complete song to be morphed. This
recording has to be analyzed with SMS, segmented into
morphing units (phonemes), and each unit labeled with the
appropriate note and phonetic information of the song
beforehand. Once this preparation stage is concluded we can
start processing the user’s voice. The SMS frame based
analysis outcomes a set of SMS analyzed frames with its
corresponding appropriate parameterization. Each of these
frames is then associated with the phoneme of a specific
moment of the song and thus with a target frame. The system
first recognizes what the user is singing (phonemes and
notes) and then looks for the same sounds in the target’s per-
formance (i.e., synchronizing the sounds). Once a user frame
is matched with a target frame, they are morphed by inter-
polating their parameters and the new morphed values are
then added back to the synthesis frame of the user. Finally
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the synthesis is done with the standard synthesis procedures
of SMS. All this is accomplished in real-time.

Only voiced phonemes are morphed and the user has
control over which and by how much each parameter is inter-
polated. The frames belonging to unvoiced phonemes are
left untouched, thus always having the user’s unvoiced con-
sonants in the output. In general, the amplitude will not be
interpolated, thus always using the amplitude from the user.
This will give the user the feeling of being in control.

Several modifications are done to the basic SMS proce-
dures to adapt them to the requirements of the impersonator
system. The major changes include the real-time implemen-
tation of the whole analysis/synthesis process with a pro-
cessing latency of less than 30 milliseconds and the tuning
of all parameters to the particular case of the singing voice.
These modifications include the extraction of higher-level
parameters meaningful in the case of the singing voice and
that will be later used in the morphing process.

To solve the matching problem the system includes an
Automatic Speech Recognizer (ASR) based on phoneme-
base discrete HMM’s. This ASR has been adapted to handle
musical information and work with very low delay (Loscos
et al., 1999) since we cannot wait for a phoneme to be fin-
ished before we recognize, moreover, we have to assign a
phoneme to each frame. This would be a rather impossi-
ble/impractical situation if it was not for the fact that the
lyrics of the song are known beforehand. This reduces a big
portion of the search problem: all the possible paths are
restricted to just one string of phonemes, with several possi-
ble pronunciations. The problem is cut down to the question
of locating the phoneme in the lyrics and placing the start
and end points.

Besides knowing the lyrics, musical information is also
available. The user is singing along with the music, and hope-

Song Information

e
e

fully according to a tempo and melody already specified in
the score. Thus, we also know the time at which a phoneme
is supposed to be sung, its approximate duration, its associ-
ated pitch, etc. All this information is used to improve the
performance of the recognizer and also to allow resynchro-
nization, for example in the case that the singer skips a part
of the song.

In most cases, the durations of the user and target
phonemes to be morphed will be different. If a given user’s
phoneme is shorter than the one from the target, the system
will simply skip the remaining part of the target phoneme
and go directly to the articulation portion. In the case when
the user sings a longer phoneme than the one present in the
target data, the system applies some looping techniques in
order to stretch the synthesis.

5.7 Combining different axes

By combining different “basic” effects we are able to step
higher in the level of abstraction and get closer to what a user
could ask for in a sound transformation environment, we can
change, for example, the gender of a given vocal sound.

The timbre of a vocal sound is basically characterized by
its spectral shape, namely the position of the spectral reso-
nances known as formants.

A basic way to change the gender of a voice is thus to apply
two transformations: a pitch transposition and a shift in the
spectral shape. To convert a male voice into a female one we
can transpose an octave higher and apply a spectral shape shift
(when a female singer rises up the pitch, the formants move
along with the fundamental). To do the inverse transform we
also transpose the pitch an octave lower but the spectral shape
shift has to be performed in such a way that the formants of
the female voice remain stable along different pitches.
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6. Changing the musical meaning: techniques
for expressive transformations

The systems described so far, although addressing the
content-level, they are focused on transforming sound prop-
erties that are more or less related to signal properties. But,
if we raise our level of abstraction a bit more, we may address
the issue of how these sound transformations may affect the
musical (symbolic) layer. Or the other way round, how can
we transform the sound in order to accomplish a musically
meaningful effect.

The transformations presented in this section are mainly
focused on exploiting the musical structure of the sound
for generating expressive transformations. They can be also
described as decision processes that determine the mapping
between input parameters and control parameters driving
the different basic transformations described in the previous
section (pitch, loudness, duration, and timbre). For instance,
a time scaling system can be used for transforming the dura-
tions of the notes contained in a sound, given a musical inten-
tion. Thus, these musical transformations are concerned with
musical concepts such as rubato, characteristics of note
attacks, or articulation.

In order to perform transformations at the musical level,
we have a new requirement: we need to extract musical fea-
tures of the sound at the analysis step (see Fig. 7). These fea-
tures can be numerical — like the starting time of a note- or
symbolic — like the categorization of sound regions as note
attacks, note releases, or note decays. Moreover, the values
for these features can have an associated degree of
uncertainty.

Another important aspect of musical expressive transfor-
mations is that some of them contain a subjective component
and/or only have partial formal models-like for example, the
expression of emotional content. These two characteristics
have motivated the use of artificial intelligence (AI) tech-
niques for implementing musical transformations. The
models used in the musical transformation systems are then
acquired by means of the analysis of collections of sound
data. Thus, these Al approaches introduce an additional off-
line phase of training/learning. Then, the idea illustrated in
Figure 16 enriches the schema of sound transformation by
introducing this training step. This difference with respect to
the transformations presented in the previous section is also
important because some systems can use different features
for the training phase and for the transformation phase. For
example, the training phase for learning time variation rules
can be performed using MIDI data as input but generating
knowledge (in a form of a collection of rules) that can be
applied to more general analysis features.

In the next two subsections we will give examples of
musical transformation systems grouped by different axes:
tempo, dynamics, and articulation transformations. Because
the systems dealing with tempo transformations also deal
with dynamics transformations, we will describe both trans-
formations together. The final subsection will describe the
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Fig. 16. Training cycle in the high to low-level mapping.

SaxEx system, an attempt to combine all three expressive
axes using a spectral model as input/output. The SaxEx
system achieves this goal by means of restricting the focus
of application: monophonic jazz melodies.

6.1 Tempo and dynamics transformations

Transformations of tempo are related with transformations
of time (time scaling). The goal in tempo transformations for
a given sound is to decide an envelope for time scaling taking
into account the musical content of that sound. That is,
expanding or shorting notes and anticipating or delaying
notes.

Transformations of dynamics are related with a change in
loudness. The goal in dynamics transformations for a given
sound is to decide an envelope for loudness transformations
in a similar way than tempo transformations act in time
scaling. For example, a common dynamics transformation is
the generation of crescendo or diminuendo curves.

Rules for music performance

The rules for music performance designed by the KTH group
(Bemdtsson, 1996; Friberg, 1995) were one of the first
attempts to provide high-level musical transformations. They
are not only restricted to tempo and dynamics transforma-
tions but the majority of them are applied to these two trans-
formations. These rules are inferred either from theoretical
musical knowledge or by experimental results (training), spe-
cially using the analysis-by-synthesis approach. The rules are
divided in three main classes: Differentiation rules, which
enhance the differences between scale tones; Grouping rules,
which show what tones belong together; and Ensemble rules,
that synchronize the various voices in an ensemble.

Artificial Neural Networks approach

Another approach taken for performing tempo and dynam-
ics transformation is the use of artificial neural network tech-
niques (ANN). In Bresin (1998) a system that combines
symbolic decision rules with ANNSs is implemented for sim-
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Fig. 17. Saxex, the basic system.

ulating the style of real piano performers. The outputs of
the ANNs were expressing time and loudness deviations. For
developing the ANNs they extend the standard feed-forward
ANN trained with the back propagation algorithm with feed-
back connections from the output neurons to the input
neurons.

Inductive learning and knowledge discovery approach

The work of G. Widmer (Widmer, 2001) is another example
of the use of rules for performing transformations of tempo
and dynamics. The approach taken in this project was first to
record and preprocess a large amount of high-quality musical
performances (containing more than 400.000 notes). Then,
and using this large amount of examples, they are applying
machine learning techniques for inducing performance rules.
The project is now producing the first very promising results

in the form of collections of induced rules. These rules are
not really incorporated in a transformation system yet but
they are providing knowledge for designing a performance
theory.

6.2 Articulation transformations

There are not many research results on articulation transfor-
mations. The work from the University of Padova (De Poli
et al., 1998) addresses the articulation goal. From the analy-
sis of the differences between recordings obtained by
asking a musician to play the same theme given different
adjectives (light, heavy, soft, hard, bright, and dark), they
implemented a synthesis module based on a violin physical
model. In this work, an analysis-by-synthesis methodology
is adopted for determining the acoustic parameters to be
controlled.
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Another research focused on the analysis of the articula-
tion transformations is presented in Bresin (2000). The paper
is mainly centered on the analysis of articulation strategies.
It provides experimental results of the analysis of piano
recordings played given eight different adjectives (light,
heavy, soft, hard, bright, dark, passionate, and flat). In Bresin
(2001) these articulation rules are incorporated into the
Director Musices system.

The work by R. Danenberg (Dannenberg & Dereny, 1998)
is also a good example of articulation transformations for
trumpet synthesis. They developed a trumpet synthesizer that
combines a physical model with a performance model. The
goal of the performance model is to generate control infor-
mation for the physical model. They performed a collection
of controlled recordings for analyzing the trumpet behavior
and then, they generalized the results obtained. An important
remark of their work was that the phrase synthesis approach,
as opposed to of the note-by-note approach, is crucial for
obtaining expressive performances. That is, the study of
articulation transformations is required.

6.3 SaxEx

The goal of the SaxEx system (Arcos et al., 1998) is to gen-
erate expressive melodies by means of performing transfor-
mations in five different expressive parameters: dynamics,
tempo, vibrato, articulation, and note attacks. For achieving
this goal SaxEx works with the analysis features provided by
the SMS (Serra, 1998) spectral model. The counterpart of the
use of this rich model is that SaxEx is only focused on gen-
erating expressive melodies for monophonic instruments in
the context of jazz ballads.

The transformation input

The current approach taken in SaxEx for modeling the analy-
sis features provided by the SMS techniques is the use of
fuzzy techniques. The advantage of using fuzzy techniques
is that we can abstract numerical features provided by a low
level analysis by a collection of fuzzy labels with associated
membership degrees. This approach facilitates the reasoning
process without losing information. For instance, we have
divided each expressive parameter with a collection of five
fuzzy-sets with labels very-low, low, medium, high, and very
high (see Fig. 18). When deciding the value to be applied in
a given expressive transformation (SaxEx uses fuzzy sets
for combining different alternatives (Arcos & Lopez de
Mantaras, 2002).

The approach

One of the problems of musical expressive performance is
that a large part of this knowledge is implicit and very diffi-
cult to model with a complete theory. For an expert instru-
ment player, it is easier to provide this knowledge by means
of playing specific performances (providing examples of

Very low Low Medium High Very high

0 >

20 Tempo 320

Fig. 18. Linguistic fuzzy values for rubato expressive parameter.

good expressive performances). This nature of the problem
motivated the Saxex team to follow a case-based reasoning
approach. Case-based Reasoning (Aamodt & Plaza, 1994)
(CBR) is a recent approach to problem solving and learning
where a new problem is solved by finding a set of similar
previously solved problems, called cases, and reusing them
in the new problem situation. The underlying hypothesis of
CBR is that similar problems have similar solutions. Thus,
CBR is appropriate for problems where (a) many examples
of solved problems can be obtained — like in our case where
multiple examples can be easily obtained from recordings of
human performances; and (b) a large part of the knowledge
involved in the solution of problems is tacit, difficult to ver-
balize and generalize.

The main subprocesses involved in a CBR system are the
retrieval process and the adaptation process. The goal of the
retrieval process is to find previously solved problems (cases)
“similar” to the current problem. In retrieval, the core deci-
sions are how to define the similarity measures. For instance,
given two melodies, how to estimate when they are similar
enough. The goal of the adaptation process is to reuse the
decisions taken in the cases for solving the new problem. In
adaptation, the core decisions are the design of the reusing
mechanisms. Finally, incorporating the problems that are
solved by a CBR system into its case memory, we are pro-
viding learning capabilities to CBR.

The basic system

An input for SaxEx is a musical phrase described by means
of SMS analysis features grouped as note regions. For each
note region the SMS provides information about durations of
attack, release and decay; dynamic envelopes; vibrato levels
and non-harmonic signals. Moreover, the user can provide
specific qualitative values along three affective dimensions
(tender-aggressive, sad-joyful, calm-restless) expressing the
user preferences regarding the desired expressive output
performance. Affective information can be partially speci-
fied, that is, the user does not have to provide values for every
dimension. Additionally, information of the harmonic chord
sequence in the musical phrase is also included.

The output of the system is a collection of transformation
instructions that are sent to the SMS synthesis for generat-
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ing an expressive sound transformation. For deciding the
transformation instructions Saxex uses a memory of cases of
expressive performances previously recorded and coded. For
determining what notes are similar to the notes of a given
problem, SaxEx is provided by two general theories of
musical perception and musical understanding: Narmour’s
implication/realization (IR) model (Narmour, 1990) and
Lerdahl and Jackendoff’s generative theory of tonal music
(GTTM) (Lerdahl, 1993). Moreover, SaxEx incorporates
specific knowledge about Jazz theory. The use of the IR
model provides a musical analysis based on the structure of
the melodic surface. GTTM, on the other hand, offers a com-
plementary approach to understanding melodies based on a
hierarchical structure of musical cognition. The Jazz Theory
is introduced in SaxEx for the specific treatment of harmony
in jazz. In jazz the notion of tonality is secondary and other
aspects such as chord progressions, the tonal functionality of
chords, or the use of dominants are more important.

The musical models are the basis for the collection of ten
similarity criteria currently implemented in SaxEx. The
system provides an initial combination of these criteria but
the user can change it. After the retrieval and ranking of the
notes more similar to the current problem, the role of the
SaxEx adaptation process is to determine the expressive
transformations to be applied to each note. That is, for every
note in the problem phrase, we have to determine a value for
each of the five expressive parameters. To determine these
values, the first step is to inspect the solutions given in the
precedents (the values chosen in each similar note for each
expressive parameter). Because these values are never
exactly the same, SaxEx is provided with a collection of
reuse criteria that can also be activated and deactivated by
the user. An example of a reuse criterion is the “majority rule
criterion” that chooses the values of the precedents that
belong to the linguistic fuzzy label applied in the majority of
precedents.

Having modeled the linguistic values of the expressive
parameters by means of fuzzy sets, allows us to apply a fuzzy
combination operator to these values of the retrieved notes
in the reuse step. The following example describes this com-
bination operation.

Let us assume that the system has retrieved two similar
notes whose fuzzy values for the rubato are, respectively, 72
and 190. The system first computes the maximum degree of
membership of each one of these two values with respect to
the five linguistic values characterizing the rubato shown in
Figure 18. The maximum membership value of 72 corre-
sponds to the fuzzy value low and is 0.90 and that of 190
corresponds to medium and is 0.70. Next, it computes a com-
bined fuzzy membership function, based on these two values.
This combination consists on the fuzzy disjunction of the
fuzzy membership functions low and medium truncated,
respectively, by the 0.90 and 0.70 membership degrees.
That is:

Max{min(0.90, f[low]),min(0.70, f[medium])} (17)

20 72 Tempo 190 320

COA=123

Fig. 19. Fuzzy combination and defuzzification of rubato value.

The result is shown in Figure 19. We finally defuzzies this
result by computing the COA (Center of Area) of the com-
bined function. The defuzzification step gives the precise
value for the tempo to be applied to the initially inexpressive
note; in this example the obtained result is 123.

7. Conclusions and future work

We are interested more and more in processing and trans-
forming content and not (only) signal. This approach has
already brought up some exciting applications and is likely
to be one of the most important future trends. Throughout
this article we have tried to give a clear picture of what
content-based transformations are, giving examples of sound
and music transformations. We have not intended to offer a
thorough compilation of already implemented transforma-
tion schemes that may address the content level and instead
we have concentrated on systems that have been imple-
mented by the authors or are somehow related to our work.

The list of ongoing research and future work on this field
could be long enough to make for another article. Suffice it
to list the main conceptual lines in which more effort is being
put forward:

1. Object Processing. A complex sound mixture may be seen
as the sum of different sound objects (mostly, but not only,
instruments and sound sources). By analyzing the content
of the mix we may be able to process and transform single
objects out of the mix (without having to separate them).

2. User-adaptive transformation schemes. Machine learning
schemes (such as CBR) can be applied in order to adapt
a transformation system to the user preferences. In that
way, we may be able to implement more efficient high-
level transformations departing from the fact that most
high-level labels are not universally accepted concepts
and rely much on the user’s background.

3. Relating symbolic (musical) and perceptual information
to low-level signal data, in both directions (from low level
to high level in the analysis step and vice versa in the syn-
thesis stage). This is obviously the most difficult issue that
has to be dealt with not only when implementing content-
based transformations but also in any kind of content
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driven scheme. As in the previous point, Machine Learn-
ing techniques are already proving to be a valid approach
for descovering these relations.
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