Frameworks Generate Domain-Specific
Languages: a Case-study in the Multimedia
Domain

Xavier Amatriain , Telefonica Research, Barcelona, Spain
Pau Arumi , Barcelona Media, Barcelona, Spain

O

ABSTRACT

We present an approach to software framework development

that includes the generation of domain-specific languagespsis, as with any language, are made of a vocabulary,
(DSL) and pattern languages as goals for the process. Qugrammar, and a syntax. The vocabulary, and the grammar
model is made of three workflows — framework, metamodeind syntax at the abstract level, are provided by an assdciat
and patterns — and three phases — inception, constructidn, ghetamodel. But the concrete syntax will depend on the way
formalization. The main conclusion is that when develogngthe particular DSL is implementede-g.whether it is a visual
framework we can produce with minimal overhead — almogf textual-based DSL. In other words, a given metamodel,
as a side-effect — a metamodel with an associated DSghich includes every component of a DSL except for its
and a pattern language. Both outputs will not only helgoncrete syntax, might be implemented or realized through
the framework evolve in the right direction but will also beyifferent concrete syntaxes.

valuable in themselves.) _There are two common approaches to define a DSL: Start
In order to illustrate these ideas, we present a case-studyh, the general-purpose UML and constrain and refine its

the multimedia domain. For several years we have been de- . e :
veloping a multimedia framework. The process has productg?d€ o better embrace domain specificities; or use a generi

a full-fledged domain-specific metamodel for the multimedi@€tamodeling tool in order to define a new modeling language
domain, with an associated DSL, and a pattern language. that relates to domain modeling concepts (see Mernik's.et al
Index Terms —D.2.11.b Domain-specific architectures D.1.7 Visual Pro- Survey [26] for more information on standard approaches to
gramming D.2.18.a Life cycle D.2.2.a CASE DSL design).
Here, we present a different approach that consists of
integrating the definition of a DSL in the development preces
1 INTRODUCTION of a software framework. Rather than proposing this as a
The benefits of modeling languages are well-established ganeral-purpose approach to defining a DSL, our goal is to
engineering. The basic idea is to come up with a set bighlight that both ideas are so intimately related that nvhe
commonly accepted concepts, notations, and rules in ordiEveloping a domain framework using recorded best pragtice
to better express problems and solutions. This way we atés possible to obtain a full-fledged DSL with very little ded
mimicking the flexibility of a natural language in which aoverhead: frameworks generate domain-specific languages.
vocabulary, syntax, and grammar allows the expression Biie resulting DSL will fall in the category efmbeddedSLs.
complex ideas by combining atomic semantic and functionah embedded DSL, as defined by Hudak [18], is a DSL
units. that is derived from a general-purpose programming languag
UML filled a gap in Software Engineering by standardizingnheriting the infrastructure and tailoring it to the spwci
a generic modeling language. The existence of such a flexildiemain.
and general-purpose modeling language is good enough iOur approach to DSL design is part of a comprehensive
many cases. In others, however, we would prefer to haveramework development process model that aims at not only
more tailored and specialized tool, even if that means comproducing a high-quality framework but also at providing
promising flexibility and genericity. Furthermore, the gen a domain-specific language and a pattern language. Those
UML is sometimes distant from the concepts and tools usedantputs may well become more valuable than the framework
some particular domains. Having domain experts adopt UMtself since they can be reused beyond the framework. Our pro
is not always the best solution: we would like our generigosed process model explicitly distinguishes three wonkdlo
Software Engineering tools and concepts to adapt to thesdramework, metamodel, and patterns — and three phases —
particular domains. inception, construction, and formalization — in the depelo
Domain-specific languages (DSL) aim at solving thesment process. We also promote the iterative nature of psoces
issues by offering a comprehensive modeling languager¢ailo so that all outputs — framework, DSL, and pattern language —
to a particular domain. General modeling techniques amade derived incrementally, feeding from the evolution of th
practices are combined with a thorough domain analysis. To#her products. We describe all these workflows and phases,
result is a subset or subclass of those general technigquads, tincluding their interactions, in Section 2.
and practices that better fit the particular application diom In some sense, our approach resembles the one outlined by

Roberts and Johnson [28] in their collection of framework pa2.1 Framework Workflow

terns. We review their approach, together with others e€llatThe framework workflow hosts all of the activities that focus

process models, in Section 3. on delivering a useful framework in theaditional sense
In order to illustrate these ideas, we present a case-study13), [29]. Therefore, our proposed approach in this womkflo

the multimedia domain in Section 4. For several years Wglies on applying well-known best practices for framework

have been developing CLAM, a framework for audio angevelopment. In particular, we base our process model on the
multimedia (see Section 4.1) . The process has producegofiowing principles:

full-fledged domain-specific metamodel (presented in 8acti | gmall initial investment
4.2), a DSL with several concrete syntaxes (see Section 4.3), |terative and incremental development

and a Pattern Language (see Section 4.4). « Application-driven framework design
2 A DSL-ORIENTED FRAMEWORK DEVELOP- ° uive for black-box behavior .
In the next paragraphs, we will detail how these principles

MENT PROCESS are put into practice into each of the process phases.
In this section we propose a general-purpose process model)) L
for framework development. The goal of such a procegsl'l Inception: Framework Requirement Elicitation
will be — beyond the obvious design of a well-constructe$/e do not favor a big upfront analysis and design phase.df thi
and useful framework — the generation of a domain-specifkSeldom advisable when developing any kind of application
language (or several) and a pattern language. The iterati/& even less so when developing a framework. The number
formulation of a domain metamodel drives the design proce&§ use cases and breadth of the problem, make the unknowns
which can be considered a particular approach to Mod&OW exponentially. . . _
Driven Development (MDD) [25] in the context of framework Ve cannot aim at capturing the details of a whole domain
development. during this initial phase. However, there are important ac-

The proposed process model is mainly derived from tfvities that we shoulq undertake in or_der to obtain a first
authors’ experience in developing the CLAM framework. ThEPUgh domain analysis. When developing a regular system,
details of this particular process and its outcomes will i€ usually identifyactorsthat will interact with our system.
explained in Section 4. We shall now focus on formulatin i important to bear in mind that in a framework, a special,
a general-purpose approach based on those learnings. ~ and most important, form of actors, will be the concrete

Figure 1 illustrates the main activities in the proposegPPlications that will be developed within the framework.
framework development process. The process is divided inkBerefore, one of the basic activities in this phase will be
three separate threads workflows Framework Workflow (O identify a set of relevant applications that play the rofe
Metamodel Workflowand Patterns WorkflowEach of these the actors by defining some initial use cases. Ideally, wet wan

workflows encompasses and frames activities at a particuPund 3 to 4 applications that give a good enough sample
abstraction level. of the problem space ie. they should have requirements as

&ifferent as possible and represent as many of the targeted

process, which we calinception Construction and Formal- US€ cases as possible. In CL.AM, for ipstance, we choose an
izatiorl. Each phase hosts different activities with a differeftPPlication with strong real-time requirements, anothee o
goal in mind. However, note that we provide several iteratigVith @ complex process flow, and a final one with a focus on
points. For instance, the Construction phase, where most®fomplete and flexible user interface (see Section 4.1 for
the development will occur, should be completely increraentmore details). The |n|t|al_ selection of applications toveri
with iterations as short as possible. Also, once the fomaali ffamework development is captured by tiieree Examples
tion phase is concluded, we do not expect the framework RG{t€MN in Roberts and Johnson’s catalog [29].
remain unchanged. For this reason we provide the model Withlo!eally,_the applications we choose to drive our framework
an iteration point that leads back into the Constructiorsphades'gn will already be develop_ed r_:md f_uIIy functional. The_
Our proposed model is in fact favorabledgile principles. goal when choosing these applications is to treat them as if

Among other things, we advocate for a simple upfront analyéhey were to b_e refactored into th_e frame_/vork mfr_ast@e:tur_
and design and an iterative approach for the rest of t welcomed side effect of choosing working applications is

process. Our process can therefore be considered as awondPat these_ will have developers with a good understanding of
implementation ofagile metamodelingé] in the context of the domain. These developers should help us understand the
framework development domain and should become our on-site clients on the technica

The novelty in our process model is not so much in the w ' 'I('ah . i h hould b hort ible. H
a particular workflow is addressed, since in each of them we € inception pnase should be as short as possible. How-

rely on well-known techniques and practices. The novelty is ever, finding the set of relevant applications and undedstgn

the fact that the three workflows are addressed in paraiiel, athelr requirements is not a trivial task.

we expose an explicit relation and communication channels| 2 Construction: Application-driven Framework De-
between all three workflows. sign

1. Although these names bears some resemblance with trenBRlatinified In the Inception phase we chose appllcat!ons with the idea
Process, our model is not related to the RUP framework to refactor them into the framework, while the framework

We also show three distinct phases in the developm

- - = - - - 1 — —9— — — N
(hure

Requirement Pattorms
Elicitation /
App. Selection

Inception
|(Domain Analysis)

Initial
Metamodel /
Metaphor

Analysis /
Architecture
Patterns

Usage
Patterns
Projection ||

Metafor

Pattern:
o 1T 71—\ atterns) 1",
(7 - _, ______ v 4 \l
P Metamodel Design Domain)
| Apglelcztlloonm;]\zen Refinement Patterns Patterns Patterns | Construction
velop Application || Idenfication) | Identification
N L= — N J
v Metamodel

Formalization

Pattern
Language
Formalization

Towards black-box
Behavior

Implementation

Fig. 1. Main activities in our framework development process model that includes three workflows — framework,
metamodel, and patterns — and three phases — inception, construction, and formalization.

itself is designed to host the requirements posed by thewithout the need to use inheritance and understand thenadter
However, although some applications might yield themselvbehavior of the classes [21].
to be progressively refactored into a framework, from our In order to reach the ideal completely black-box behavior,
experience it is usually better to rewrite them from scratclve would need to offer ready-to-use versions of any com-
Sample applications set the basis for the requirements, pohent that could be needed in the framework domain. This
these requirements evolve during the process. Drivingiappghight be feasible if the framework is focused on a small
cations might well be treated akrow-away prototypeslf enough sub-domain. However, most of the time, our goal will
the process is done correctly, the framework will give birthe to minimize, rather than to eliminate, the need for white-
to many more successful applications and even the origirmdx intervention.
driving applications should be improved if still needed In this phase, once the framework infrastructure (or core)

Framework design is an ongoing and continuous refinemeist,stable enough, we will deliver a black-box version of the
each new iteration is likely to impose new requirementsost useful components. As an alternative, we can sometimes
and challenges onto it. But after some iterations the coflesign pluggable objects[28], classes that can be easily
framework development should become minimal. This idea pfirametrized in order to change the behavior, therefore re-
core frameworks similar to Bosch'st al. model of framework ducing the number of classes we need to effectively cover the
development where they distinguish betweeme framework problem space.
development anéhternal increment$13]. But in our process A fully functional black-box framework is very close to a
model, we promote internal increments that end up deligeridSL. If we have followed a similar progression in the meta-
the core framework as a consequence, rather than trying torfiwdel workflow, all we need to do is add an appropriate syntax
the core in an initial upfront design. and tools to interact with the model by plugging components.
As a matter of fact Johnson & Roberfgisual Builder[28],
which is a natural evolution of the black-box framework, can
be considered a visual domain-specific language.
The goal of the framework workflow should be to come up
\é\”th a framework that is as close as poss_lble to a black-b%2 Metamodel Workflow

ehavior. A black-box framework is one in which you can

deve|0p app"caﬂons by S|mp|y p|ugg|ng Components twethWhlle the goal of the framework workflow is to come up with
an appropriate set of tools for application developers m th

2. Many times the functionality that was originally offerég a focused dealn, the goa_l of this metamOd.el WOfkflOW 1S to.come up
application is offered as a service in the framework with the appropriateonceptsin a similar way, we will start

2.1.3 Formalization: Black-box Behavior

with an open and evolving metaphor that will turn into a more « Yet, it is important to remember — and explicitly state
concrete domain metamodel [16] as iterations go. The final — that this is an evolving metamodel. Some of the
goal will be to turn this metamodel into a DSL with several preconceived ideas about the domain might prove wrong
syntaxes that offer the users direct access to the metamodel or inexact during the framework development process.
concepts. Ideally, one of these syntaxes will be of a gragbhic ~ We — and the domain experts — should be prepared to
form therefore becoming thésual builderin the framework. embrace change

2.2.2 Construction: Metamodel Refinement

The metamodel refinement takes place throughout the frame-

One of the main activities in the Inception phase 1S Qork development and in some sense will still be active as
perform some sqrt of dOT“a'” analysis. The main a(_:t'V'F'EfSng as the framework keeps evolving. However, most of
involved in domgm analysis are: (1) _Domaln cha_rt_:lcte_mzau the metamodel refinement takes place in the Construction
(2) data CO."eCt'(m’ (3) data _analy5|s, (4) cla55|f|cat|ar1q_ hase, when white-box components (i.e. abstract classes) a
(5_) evaluation of the domain model [7]. These aCt'V't!egefactored to accommodate new requirements in the driving
will take place regardless of the approach. However, ti plications

and efforts devoted to each ta;k will vary. For Instance, IMysotamodel refinement should aim at making the first rough
approaches th_at lean towards qg!le_meth_ods “k? ours Jisiv approach more concrete and broad at the same time. Concrete
(3) and (4) will tend to be minimized in the initial phas_ebecause particular applications and the framework impeme

Sation will have to be correctly explained by the metamodel;

during the development phase. F_urthermqre, when dey@quhd broad because the more applications and use we give to
a framework, we want the domain analysis to be appllcauome framework, the more we will be testing the metamodel
driven. Therefore, “domain characterization” will be migin '

q by identifving th it licati that cdl validity and its scope.
one by identifying 91 appropria e_ap”p ications that cdie Unfortunately, metamodel testing cannot be automated in
problem space. And “data collection” will imply analyzmgan

ih icati d understanding both thei i y way, since it deals with verifying that conceptual con-
€se appiications and understanding bo CIr SeMants \,cts and concepts used in the evolving metaphor areaslid
requirements. Finally, note that our model evaluation Wwél

q th h the f K impl tation itself the framework design evolves. Metamodel testing at thigesta
one through the framework implementation Itseit. consists on the following activity: Given the current itiioa

In.the. framework workflow, our goal was to select thos&l the framework development process, verify that all cptse
applications that will help us define the requirements _add Whnd constructs in the white-box framework infrastructuaa c
be used to drive the framework development. I_n '[hIS.I’T.](.-','tBé expressed simply by using the evolving metaphor. Make
model workflow, however, we are concerned with activitieg, e that ail driving applications can also be interpreted i
that deal ywth modeling domain concepts and constrl_Jcts. A?éi‘ms of the metamodel. Pay special attention to changes
rgsult, a first and rough metamodel should be verbahze‘(‘ia Thtroduced in latest framework increment. If any of the pre-
first metamodel can be in most senses treated as the SYSIEBUs is not verified, iterate over metamodel/metaphorlunti

metaphor” [34] and should be used to better communicai&.an naturally explain current state in the framework. @th

between framework developers and the potential users. .l iementary activitites for metamodel and DSL validatio

should set a common understanding of what is being bufa+ require having a more stable metamodel, will be desdrib

and with what purpose, by defining particular terminologdl an, the formalization phase for this same workflow. However,

proce_dures. . _ those activities can also be integrated with the iterations
This metaphor should be treated as an "evolving meta-pjetamodel refinement is not a sequential activity that needs

model”. We do not expect it to be a ground truth and itg, pe executed at the end of each iteration — adding the possi-

eyolutlon will in fact mark its refinement. We should expeability of blocking the development process. It is an acyiit

this metamodel to become more concrete and also Mulfie metamodel workflow and should therefore be carried out

2.2.1 Inception: Domain Analysis or the First Metamodel

layered in each iteration. _ _in parallel to any framework development. Furthermore, we
At this stage already a few issues should be taken infaye explained the natural and obvious flow of communication
account when defining this metamodel: from the framework to the metamodel. However, sometimes

o The reason we call this domain metamodels opposed — especially in later iterations, once the metamodel is more
to a regular domain model is that the concepts shouiteble — it is the metamodel that will remain fixed and enforce
not be tailored to a particular application but rathesome changes in the next iterations of the framework if this
capture the whole range of possible applications that thas drifted from the metamodel without having a good enough
framework is targeting in the given domain. reason for doing so.

« One of the main objectives of sketching this metamodel
is to better communicate with the domain experts that23 Formalization: Metamodel Consolidation and DSL
are targeted as users. Remember that this will becofi@gdlementation
the shared metaphor. Increments at the metamodel level will lead to a formalized

o Because of the previous point, it is important to choogaetamodel in the Formalization phase. But even this for-
appropriate names and to consult with the input ohalization might need to adapt to further refactorings &s th
domain-experts when doing this analysis. framework evolves.

In any case, once we have a fairly stable metamodel and th8 Patterns Workflow

framework white-box behavior has been defined, we should pgtterns should be instrumental throughout the framework
ready to realize this metamodel through a DSL. Again, givefevelopment process. As a matter of fact, they should infieen
the iterative nature of our proposed model, it may well bé thg,e development process in many ways. Not only do we
a DSL already exists even if in a preliminary form. But, agromote the use of different kinds of patterns, but we also
this stage the implementation of a DSL will simply requirgztroduce the idea that patterns should be one of the exgpecte
deciding on a given notation that reflects the metamodel aagtputs of the process. A complete pattern language should
implementing the tool to interact with it. be the perfect complement for the full-fledged metamodel and
One of the most difficult parts of this metamodel workflodDSL obtained in the metamodel workflow. Patterns help us
is to integrate proper testing and validation. We now déscridocument frameworks [20], but not only that: using patterns
some of the activities that have proven useful to validage thillows us to understand the framework as a composition of
metamodel and associated DSL. Although we describe thetterns [35].
as if they were to occur at the end of the workflow, as a sort of In the following paragraphs we will highlight how patterns
acceptance tesmany of them can and should be intergratedre used, discovered, and formulated in the different ghake
into the iterations so that the validation is also performeatis pattern workflow.

iteratively. 231 | ion: P for Analvsi
As we showed in the evaluation of our multimedia meta-"" nception: Patterns for Analysis

model and DSL [4], a proper evaluation of a metamoddine first thing we need to be aware of and understand are the
should include a combination of qualitative and quantitti SO-calledmeta patterns According to Pree: "Meta patterns
studies. But, because in Software Engineering validatiuh a2 & Set of design patterns that described how to construct a
implementation go hand in hand [37], we base part of tffE@mework independently of the domain” [27]. An example of

evaluation in the concrete implementation of the metamoddl€t patterns that should be reviewed before starting gle ta
off designing a framework are those by Roberts & Johnson

A first and necessary condition to prove the validity 29]. Understanding these meta patterns will be the first use

a metamodel is to prove that it isnplementableand its ;
of patterns in our pattern workflow.

implementation can be used to develop a variety of systemsOn the other hand, it should be obvious that this inception

Another necessary condition to prove the usefulness of th . .
. . ase is the natural host for all sort of analysis patterhes&
metamodel is to show that it can help understand syste%s

outside the framework that originated it. We can do this H:Jatterns can pe grouped into thr_ee_ different c_ategones: &
e o . . eneral analysis patterns, (2) specialized analysisrpattand
explaining how similar systems in the same domain can

explained or even synthesized using the metamodel and domain pattems [30]
D?L : v y 1z€d using ! owever, generally applicable analysis patterns, indepen

. o dent of the domain, are hard to find. And when they exist,
Finally, we can formally assess the validity of the framdworthey tend not to give a very concrete solution to an analysis

by combining dimensions derived from the general SOftwaEﬁoblems. A good example are some of the patterns in the
Engineering corpus [37] with others borrowed from the CegnsRASP catalog [22]. Also related, are general purpose archi
tive Dimensions Framework [17]. Higher-level dimensioR8 C tgctyral patterns such as those in the POSA catalog [14keThe
be used to validate and test the metamodel, while lowevet lek5p indeed be considered a form of analysis patterns siege th
dimensions — such as the ones in the Congitive Dimensiong i, define a high-level starting point for our design.
can help us validate the DSL. But, what we are most interested in our process model
Some high-level dimensions that can be use to validateésauncovering domain patterns. These domain patterns will
metamodel are [36]feasibility, completenessand usability. follow an analysis process made of three different but eelat
Feasibility refers to how practical the abstractions in thectivities:
metamodel are and how well they fit the requirements in our, Pure Domain Patterns Elicitation: By talking to domain
particular domainCompletenesseflects two complementary experts and regular stakeholders, our goal is to identify
questions: (1) caany system in the domain be modeled with patterns that are used in the domain. Patterns should be,
the metamodel that is proposed? and (2), can a system be as always, a recurring solution to a problem in a context.
completely modeled using an instance of the metamodel? And At this stage, these domain patterns can be completely
Usability tries to answer questions such as whether it is easy to detached from any software solution, since they simply
build new models and generate systems using the metamodel; explain how domain experts address those issues and
whether the metamodel is usable by third parties; and whethe sjtuations that we will be covering in our framework.
existing projects can easily be converted to the metamodel. , Metaphorical Patterns Description: Given the metaphor
The Cognitive Dimensions Framework [17] includes finer- (i.e. rough domain metamodel) described in the meta-
grain dimensions that can be used to validate the DSL. This model workflow, we want to identify, already in this
framework has been specifically designed for evaluatingalis phase, related patterns. This basically entails trangjati
languages but many of its dimensions are applicable to non- the pure domain patterns elicited in the previous step to
visual DSLs. The Framework includes dimensions such as: the concepts and constructs of the driving metaphor.
Viscosity Hidden DependenciedHard Mental Operations o Usage Patterns Projection By choosing the driving
Imposed Guess Aheadnd Secondary Notatian applications in the framework workflow, we are defining

what we deem are relevant framework use cases. Asmay address high-level architectural problems, offer tamhs
matter of fact, an initial assessment of the requiremerttsa particular usage of the framework, or give low-leveliges
posed by the driving applications will already uncover details for some of the components.

number of recurring usage needs. At this point we A% RELATED APPROACHES

likely to identify some recurring problems and contexts
but not their solution. Still, it is a good practice to recordioberts & Johnson proposed an approach to framework devel-

these usage patterns and bear them in mind in the n&RMment that is somewhat similar to ours [28]. As a matter of
phases. fact, and to the best of our knowledge, it is the only approach

{Qat touches upon the three workflows included in our process
model. They propose to base framework development in a se-
(ﬂes of patterns that cover different phases of the devetopm
process. For instance, thehree Examplepattern advocates

Some of these uncovered domain patterns might be rela
to pre-existing patterns in neighboring domains. Thesfoare
should not forget to support our findings by searching f

pattern catalogs describing similar or related domainghén

multimedia pattern language we present in Section 4.4 1I idenFifying three appligations garly on to drive the iges
instance, we were able to re-use and adapt patterns com main phases according to this patterm language would be
from rela;ted dataflow languages wilte-box black-box visual builder This is indeed similar to

our proposed approach in which a DSL should be the ultimate

232 Construction: Pattern Evolution goal of the development process — asa matte.r of fact, the DSL
. .) can be understood as the sum of thisual builderand the

The main goal for the construction phase is to evolve thg,,aqe toolpattern, also included in their catalog.

dl_fferent patterns that were identified in the inception sphg However, there are important differences between our model

First, patterns related to the metaphor should progrégsive 4 that of Robert & Johnson. First, although the authors do

evolve into metamodel patterns with the final goal of bein&;et a path to go from initial framework design to a DSL
able to understand the metamodel as a composition of th do not establish the definition of the DSL as a goél

pe}tterns. As a ma_tter of fact, some of these metamodgl pattess the process itself. As a matter of fact, they consider that
might at some point become part of the metamodel, since t ny frameworks will never make it to the final stage so they

will be defining concepts and constructs that are inherent\m| never have the need to provide any kind of DSL. The
the metamodel itself. authors do not distinguish different workflows — althougéyth
On the other hand, this is the phase where usage patt€jSeypiain that some patterns are concurrent — or identify

will be formulated and become concrete. The different iterﬁhases and activities. More important perhaps, they do not
tions in the framework workflow will end up offering SOIUtiBn,establish a clear relation between parallel activitiesoAlit

to the usage problem-context pairs identified in the incepti is difficult to interpret how to fit in the iterative nature dfet

phase. Usage patterns will also help evolve the framewodk &) ;o5 into their pattern language. Finally, and althcthgh

the metamodel n the right Q|rect|on. main concern is the patterns workflow, they do not consider
The construction phase is also the natural place Whe{g, natterns at different levels may be needed. For instance
st_andard design patterns W_'" be used. Ideglly, these rpattethey do not discuss the need of design patterns or domain-
will .not only be used but will also help define the Io\’V'Ievegpeciﬁc patterns. In any case, we do not see our process model
design for some of the metamodel patterns. As a matter qf fagg opposed to this pattern language. Our approach is more
some of the metamodel patterns might be a sort of specializefl, nrehensive, detailed, and structured but it is comiglete
design patterns for the given domain. compatible with Roberts & Johnson patterns and complements
L L them in many ways.
2.3.3 Formalization: Pattern Language Formalization van Deurseret. al [32] explain that a typical development
As seen in the previous phases, both the metamodel afch DSL involves three steps with a number of phases:
the framework itself give place to a number of patterns Analysis: (1) identify problem domain, (2) gather domain
that include domain patterns, metamodel patterns, sjzsial knowledge, (3) cluster knowledge into small number of

design patterns and usage patterns. This does indeed heve t concepts, and (4) design a DSL that describes applica-
feedback between the three workflows. tions in the domain.

Our final goal in this workflow is to define generative | |mplementation: (1) Construct a library that implements

pattern language® — i.e. a pattern language that not only the concepts, and (2) design and implement a compiler
explains rules of arrangement but also allows users to@reat i at translates DSL programs to library calls

endless combinations [2]. Therefore, patterns should @m a, |jge- (1) Write DSL programs for all applications
being coherent. However, they should also be useful in iSO'AIthough this approach bears some resemblance with our
lation and in different settings than the ones defined by t?ﬁ

metamodel. Patterns in our final generative pattern larguag ., phases, there is a very important conceptual difberen
' 9 P MU at it promotes aanalysis-firstapproach to DSLs. Also, there

3. Note that the use of the word “language” in this contextdsaonsistent IS no notion OT iteration bgtween phases. Most |mportanttly,
with the formal notion of language as in Domain Specific Lagpi We have does not provide any relation between the development of the
chosen to use the expression “Pattern Language” for censistwith existing DS and that of the framework.

literature. In this context, a Pattern Language should lserstood, as defined Aksi 11 f h h buildi
by Johnson, as “a set of patterns, each of which describestholve a sit et. a [] propose a four phase approach to building

particular kind of problem” [20]. frameworks using domain models. First, they model the top-

level structure of the framework using the so-cakedwledge and overlapping in which the same class can belong to
graphs Second, they refine each node in the graph into aeveral patterns. POAD advices for the use of the stringing
acyclic sub-knowledge graph calledowledge domairiThird, approach at the higher levels of abstractions while allgwin
they identify which nodes can be included together in the tofor overlapping patterns in the detail design of the lower
level knowledge graph. Finally, they map knowledge domaitevels. Although this approach is a good approximation to ou
into OO concepts. This approach is interesting in that patterns workflow, there are several differences. For imt&ta
addresses both the framework and metamodel workflows. Boé POAD approach only deals with the use of pre-existing
the model is so much focused on formalities that its prakticdesign patterns assuming that a pattern library exists vleen
applicability in the general case is not clear. analysis phase starts. The main goal of the analysis phase is

Van Deursen notes the similarity between DSLs and Oi@ fact to select the most appropriate patterns, which deg la
frameworks in his case study on the financial domain [31]. Hetegrated into the model in the design phase. Also, aralysi
concludes that when developing a DSL from scratch, it makpatterns are not included in the POAD process, nor is the goal
sense to do it by extending an OO framework. Using a DSif the development to uncover new domain-specific patterns.
in the context of a framework development has, according toFinally Jacobsert. al present a pattern-oriented approach
van Deursen, the following advantages: (1) it is a guide & tlspecific for framework development [19]. They highlight the
framework design since any construct that does not fit néyuradistinction between regular design patterns ameta patterns
into the DSL should probably not be in the framework eitheand show that patterns are useful in different ways in alkpba
(2) it encourages black-box, as opposed to white-box, hehavof the framework development process — analysis, desigh, an
in frameworks, and (3) it gives more abstract access to timeplementation. During these phases, not only new patterns
framework, encapsulating even the language used to devedop created but others are evolved by either transformation
the framework. The author’'s conclusions when relating #amreplacement. The authors capture the importance of botiy usi
works and DSLs are in essence very similar to ours excepid generating patterns during the process in an increinenta
that the starting point is different: we advocate for a psscemanner, but they do not show how to formalize this into a
that integrates metamodel and framework workflows since tpattern language nor mention any connection to metamaglelin
beginning while Van Deursen starts from the premise thataativities.

pre-existing framework can benefit from a DSL.
Bonachet. al[12] present a practical case study of deve? A CASE STUDY IN THE MULTIMEDIA DOMAIN

oping a DSL for costumer user profiling. They advocate fofhe history of software frameworks is very much related to
a completely iterative process model, with iteration ot the evolution of the multimedia field itself. Many of the most
between most activities. They report executing the foltayi successful and well-known examples of software frameworks
activities: (1) interview domain experts, (2) develop misde deal with graphics or user interfaces. Although probab$g le
(3) write programs that observe the models by hand, (4) desighown, the audio and music fields also have a long tradition
the language, (5) write programs using the language, (6) i®f similar development tools. It is in this context where we
plement runtime system and language compiler. In particulind our award-winning CLAM framework [3{.
they stress the importance of keeping domain experts iedolv pyring the CLAM development process several parallel ac-
during the whole process. Although this approach focusbs ofjyities have taken place. While some sought the goal ofritavi
on our metamodel workflow, it is interesting since it highi§ 3 more usable framework, others dealt with the appropriate
the iterative nature of the DSL nature, which is also a vegpstractions and reusable constructs in the domain. Ttee lat
important conclusion of our approach. gave place to the definition of a complete metamodel for
Cleaveland [15] proposes a process model for buildifge multimedia domain, and a pattern language for dataflow-
application generatorswhich are a particular case of DSLgriented systems. Most of these ideas, although a resutieof t
in which a compiler translates high-level specification® in cLAM process itself, are validated by their presence in many
a regular low-level programming language. The process thgjher multimedia frameworks and environments.
propose is made of seven steps: (1) recognize domains, (2pyr experience in this development process originated
define domain boundaries, (3) define an underlying model, (hk general approach we presented in Section 2. As such,
define the variant and invariant parts, (5) define specifioati c AM touches upon the three workflows and phases described
input, (6) define products, and (7) implement the generatgierein. In this section we will not detail the activitiesigorac-
According to Cleaveland, all but the last step are led by doma;jces used in the process since they are already documented
analysts. His proposed approach can be seen as a semalizaH the general-purpose approach. Instead, we will desthide
of our concurrent metamodel and framework workflows iButput of each of the workflows. In section 4.1, we explain
which initial activities are more related to the metamod® a the main components and features of the framework, which
final ones to the framework. are the result of the framework workflow. In section 4.2, we
Yacoub & Ammar describe a pattern-oriented approach &pjain the metamodel, and in section 4.3 we show how this
build software systems known as POAPaftern-oriented metamodel can be accessed through a number of associated
Analysis and Design[35]. In particular, they focus on how pg) 5. Finally, section 4.4 briefly explains the pattern laage

to use design patterns starting already in the analysisephafat was produced in the patterns workflow.
They identify two approaches to using patters#inging,

in which patterns are glued together to compose a desigry. It received the '06 ACM Best Open-Source Multimedia Safvaward

4.1 CLAM: A Multimedia Processing Framework the metamodel, the use of the design patterns, and the lsenefit

CLAM (originally from C++ Library for Audio and Music) of the framework.

is a full-fledged software framework for application deyelo))) -
ment. Although it was initially tailored for audio and music4-2 4MPS: A Multimedia Domain-specific Metamodel
it has also proven its applicability to the broader Multireed The results of the CLAM development process in its meta-
domain. CLAM has been used for applications that range fromodel workflow was the Metamodel for Multimedia Process-
on-the-fly analysis of video soundtracks [33] to 3D audimg Systems (4MPS for short) [4], a metamodel for designing
spacialization and integration with 3D visual scenes [10]. multimedia processing software systenise; multimedia sys-
offers a conceptual domain-specific metamodel; algorithrtems that are designed to run preferably on software phagor
for analyzing, synthesizing and transforming audio signaland are signal processing intensive. Such systems shane man
tools for handling audio and music streams and creatingserosonstructs not only in the form of individual and indepernden
platform applications; and ready-to-use applications. design patterns but also at the overall system model level.
We will now highlight the main features in CLAM. For fur- For this reason we proposed a coherent metamodel that
ther information please refer to our comprehensive overvieean be used to efficiently model any multimedia processing
[5] or to any of the more focused publications cited thereisystem and aims at offering a common high-level semantic
CLAM, as well as all other included applications mentioned iframework for the domain. The metamodel uses the object-
this paper, is available for download in the project webpageoriented paradigm and exploits the relation between this
CLAM offers a processing kernethat includes arinfras- paradigm and actor-oriented graphical models of commutati
tructure and processing and datepositories(see Figure 2). used in system engineering. The metamodel is not only an
CLAM is both ablack-boxand awhite-boxframework [28]. abstraction of many ideas found in the CLAM framework but
It is black-box because already built-in components inetlid @lso the result of an extensive review of similar frameworks
in the repositories can be connected with minimum or no pré-is therefore expected that domain-experts are familisin w
grammer effort in order to build new applications. Ivigite- Mmost of its concepts and constructs.
boxbecause the abstract classes that make up the infrastucturhe metamodel is based on a classification of signal pro-
can be derived to extend the framework functionality wittvneCessing objects into two categoriéBrocessingobjects that
processes or data classes. operate on data and control, abdta objects that passively
The CLAM infrastructureis the result of an in-depth andhold media content. Processing objects encapsulate agsroce
iterative domain analysis. It encompasses a number ofaatst©r algorithm; they include support for synchronous data pro
classes that are responsible for the white-box or extemsi§FSSiNg and asynchronous event-driven control as well as a
behavior in the framework. In order to build a particulaponfiguration mechanism and an explicit life cycle state etod
CLAM system, the user has to instantiate the concrete diriven the other hand, Data objects offer a homogeneous ineerfac
classes or implement a derived class that might add a néwmedia data, and support for metaobject-like facilitiasis
specific processing capability. Thefrastructure component s reflection and serialization.
also includes the application logic such as dataflow graphAlthough the metamodel clearly distinguishes betweerethes
management and nodes execution. two different kinds of objects, the managing of Data coresu
CLAM contains aprocessing repositorgnd adata reposi- €an be almost transparent for the user. We can therefore de-
tory. The processing repository contains a large set of reaq%‘r‘-”be a 4MPS system as a set _of Processing objects connected
to-use processing algorithms. On the other hand, the ditggraphs calledNetworks(see Figure 3). _
repository contains all the classes that act as data cemgain '€ metamodel can also be expressed in the language
or encapsulated versions of the most commonly used date?fngraphical models of computation as a particular case of
the domain. These classes make use of the data infraseucfo@taflow Networkg23]. Different properties of the systems,
and are therefore able to offer metaobject services such asUgh as their optimal schedule or minimal latency [8] can be
homogeneous interface or built-in automatic XML persisten derived in this way.
CLAM also includes a number of tools for services such
as input/output or XML serialization. These tools aim a#.3 Accessing the Metamodel through a Domain-
being a swiss-army knife of services that might be need&pecific Language
in the domain. All of these tools are possible because of thige 4MPS metamodel offers a domain-specific ontology that
integration of third party open libraries into the framekadn helps software developers understand the domain and helps
this sense, one of the benefits of using CLAM is that it acts @®main experts understand the framework. However, we are
a common point for already existing heterogeneous serviegfl lacking the concrete tools that give users easy actess
[3]. all these services and put them together in a coherent way:
The framework has been tested on — but also its develape lack the concrete syntax given by the notation in which to
ment has been driven by — a number of applications. Maeypress it, we need a domain-specific language.
of these applications were used in the beginning to set theOne immediate way to access all these services and interact
domain requirements and they now illustrate the feasjbilft with the metamodel layer is to use the framework itself
and code new applications by using the black-boxes that
5. http://ww.clam-project.org are provided and extending the white-boxes. In some sense,

——————— 1
! l)
[Processing Kernel Application| Multi- .
Mofreserocre] i | Skeletons threading
! b
Flow Control I b
—| Infrastructure !
! - Audio Midi Files
I I : 1 1 Devices Devices Devices
Processing ' Processing I
Repository ! {1
- Infrastructure ,
| === ! : [Visuatization Serislization
Prccesjsing Data : Processing Data| 1
Repository - Infrastructure | Model XML
I Abstraction
L

Toolkit-dependent
implementations

Fig. 2. CLAM Components. The CLAM framework is made up of a Processing Kernel and some Tools. The Processing
Kernel includes an infrastructure that is responsible for the framework white-box behavior and repositories that offer
the black-boxes. Tools are usually wrappers around pre-existing third party libraries. A user application can make use
of any or all of these components.

Processing Object

Composite
Processing Object

! I Processing Network]
I -1

Signal Flow

Control Flow
¥

O Port
O

Control

Fig. 3. Graphical model of a 4MPS processing network. Processing objects are connected through ports and controls.
Horizontal left-to-right connections represents the synchronous signal flow while vertical top-to-bottom connections
represent asynchronous control connections.

10

<?xm version="1.0" encodi ng="UTF-8" standal one="no" ?>
<networ k i d="Exanpl eNet wor k" >

i <processing id="file_reader" type="Audi oFi| eReader" >
<Sour ceFi | e>
<URI >/ horre/ xavi er/ 0001. wav</ URI >
Inport . 1 Outport X
+ Connect(o : Outport) + Connect(/ : Inport) </ Sour ceFi | e>
<Loop>1</ Loop>
Processing <lpr OCES-SI ng_> . .
+ Configure() <processing i d="sink" type="Audi oQut">
o + Start() g </ processi ng>
+ Do) <processing i d="control sender” type="Qut Control Sender">
+ Stop()
—a| # ConcreteConfigure() | <M n>0</M n>
ConcreteStart() <Def aul t >0</ Def aul t >
ConcreteStop() <Max>1</ Max>
<St ep>0. 01</ St ep>
InControl) 1 OutControl <Control Representation>Vertical Slider</Control Representation>
+ Link({o : QutControl) + Link(i : InControl) </ processi ng>
| <port_connection>
<out >fil e_reader. Sanpl es</ out >
c v | <i n>si nk. Audi o | nput </in>
[Control] !
</ port _connecti on>
— por'

<control _connecti on>
<out >cont rol _sender. out </ out >
<in>file_reader. 0 fset</in>
</ control _connection>
<flowcontrol type="Push"/>

. </ net wor k>
the code —together with the metamodel, and the patterns—

provides a low-level DSL. There is, however, an importatfsting 1: Simplified example of a 4MPS Network definition
issue with using this approach: the DSL syntax becomssing CLAM's XML Networks DSL syntax.

coupled to the low-level programming language syntax. This _

makes it hard for users to focus on the metamodel level affi*°"¥ = @ ametwork(file(full Sourcepath))

. R . X net wor k. set Confi g(source, "NSources", nunPorts))

it becomes a barrier to its understanding. for i in range(nunPorts)

For this reason, we decided to offer an alternative and mor@ewrr ocessi ng = "%_9%" % del ay, i)
accessible DSL syntax in the form of a visual language. 4MP Set wor k. dupl i cat ePr ocessi ng(del ay, newProcessing, 10+i, 50%i)
is itself a graphical metamodel so offering access to thiglle ~ netvork. addConnection(’ control _connection’, "BackgroundDel ay",
becomes immediate and simply a matter of implementing ~© @ "e"frocessing, "Delay in Samples)
the appropriate tool. In CLAM, this tool is known as the.isting 2: Example of a complex CLAM network defined as a
NetworkEditor —because of its relation to the Network classiodification of a previous network (maybe designed with the
in the metamodel. The Network Editor allows users to interadisual Networks syntax) using the Scripted Networks DSL
directly with a graphical representation of the metamodeé(syntax.

Figure 4), which in turn maps directly to framework classes
and constructs.

The Network Editor is a stand-alone application developed direct visual representation. This allows users to ictera
by adding a presentation layer to the framework classes. Tdr@phically with the metamodel without directly accessiing
user can directly access the repository of black-box compBLAM framework. As a matter of fact, the Network Editor
nents and interact with it by configuring objects and defininigself bases its persistency format on this XML schema.
4MPS Networks. The tool cannot only be used to build fast This way we see that the metamodel is not coupled to
prototypes but it can in fact generate final applicationesi a particular visual language but can in fact be instantiated
stand-alone or audio plugins, with efficiently compiled eod by different syntaxes such as an XML dialect or a scripting

Both the metamodel and the associated DSL were evalualadguage. As a matter of fact, once we have the metamodel
using the approach described in Section 2.2.3. See the-puhfid the framework in place we can think about extending the
cation where the metamodel is presented for more details available syntaxes with other syntaxes that are optimined f
the results [4]. some particular uses.

The following list summarizes the 5 syntaxes that have
4.3.1 Optimized CLAM DSL Syntaxes for Specific Prob- been developed within CLAM with their advantages and
lems disadvantages:

Although the graphical representation of the metamodel ise Black-box C++ is code in C++ using the black-box
usually preferred, it is sometimes practical to have a tlirec framework style (i.e. instantiating Processing objects vi
one-to-one mapping to a textual format. In the case of CLAM, factories, connecting their data and control ports, con-
XML was chosen as the basis for our textual-based DSL figuring their parameters and setting them into running
syntax (see example in Listing 1). Because these textual file state.

contain a complete definition of a 4MPS Network, they have Pros: It gives total flexibility and it is appropriate for

Fig. 5. Main participant classes in the CLAM implemen-
tation of the 4MPS metamodel

File Network Interface
BEd= Q0 &S B AKX @12

Processing Toolbox

@ Audio Input/Output

- Audio File /O
% MonoAudioFileReader
@ MonoAudioFileWriter

® MultiChannelAudioFileReader
@ MultiChannelAudioFileWriter

View Help

e®

@ Graphical Monitors

11

Double click: configure. Left click: Processing menu

stopped | s

Fig. 4. NetworkEditor is the visual DSL for the CLAM framework. It can be used not only as an interactive multimedia
dataflow application but also to build networks that can be run as stand-alone applications.

some specific uses, such as the ones requiring a complex by using textual functions such as “copy & paste” or

application logic.
Cons: Exposes the C++ syntax and low-level (non
domain-related) details to domain-experts. It may also
be unsafe, since the user can introduce operations that
compromise the execution requirements such as real-time
constraints.

o Black-box Scripting is based on Python code in the
black-box framework style.

Pros: It has a simplified syntax, when compared to the
black-box C++, while still retaining much of its flexibil-

ity. It allows for interactive signal-processing scriggim
Python. It eases the process to graphically represent data
using drawing packages.

Cons: It does not allow running in real-time with low-
latency, and it does not separate the network configuration
state from the network running state.

o Scripted Networks Python code using a module for
creating and modifying previously created networks (see
listing 2) This syntax is used to scale up simpler networlgt's'4
created with the Visual Networks DSL syntax. Therefore\;5
the two concrete syntaxes works synergistically in a sam
workflow.

“replace all”. It is the serialization format of the Visual
Networks.

Cons:lt is less intuitive, difficult to modify, easy to cause
errors. Better manipulated through intermediate tools.
Visual Networks is the NetworkEditor’s visual building
language (see fig 4).

Pros: It is an intuitive and didactical way to describe
multimedia processing algorithms allowing both signal
processing and control flows. It executes compiled code
efficiently while allowing users to interact with control
parameters and to receive visual feedback of data flowing
through the network.

Cons:lt is difficult to manage big or repetitive networks
— for example when the number of sub-networks is a
configurable parameter. It is also difficult to reconfigure
parameters consistently across many processing objects
in the network (or many networks).

A Pattern Language for Multimedia Processing

stems
While 4MPS offers a valid high-level metamodel for the

Pros: It is the concrete DSL syntax in CLAM that allowsdomain, it is sometimes more useful to present a lower-level
for a better management of complexity, because of ifdchitecture i.n the Iar!guage o_f design patterns, wherermiagu
high-level interface for creating and modifying networksand non-ob\{|ous design solutions can be shared. Such ampatte
The runtime of this concrete DSL syntax is CLAM’s prolanguage bridges the gap betvx_/een an abst_ract metamodel such
totyper which offers both real-time and offline operatio?s 4MPS and the concrete implementation given a set of
Cons: Though it comes close, it is not as flexible as theonstraints. It also provides an efficient way to documeaet th
black-box framework approaches. framework itself [20]. _

« XML Networks is the textual XML definition of a N the following paragraphs we offer a brief summary of a
network (see listing 1) complete pattern language for dataflow real-time multimedi
Pros: It gives access to all the details the network. Caprocessing formalized by the authors [9]. _
be written programaticaly and executed efficiently with All the patterns in our catalog fit within the generic ar-

CLAM’s Prototyper. It allows for repetitive operationschiteéctural pattern defined by Manolescu as Deta Flow
Architecture[24]. However, this architectural pattern does not

address relevant problems related to the real-time muttiane| Gerem Daanow Paers

processing such as message passing protocols, scheduling A—3 B AcublesB
of processing-objects executions or data management. Our Dataflow Architecture A-3=B AusesB

pattern language is organized within three main categories ¢

o General Dataflow Patternsaddress problems of how to
organize high-level aspects of the dataflow architecture,

Semantic Ports
Stream and Event Ports

Cascading Event Ports

o Flow Implementation Patterns address how to physi-
cally transfer tokens from one module to another, accord-
agement are recurrent issues in those patterns.
Some of the patterns in the catalog are very high-level whire v
pattern languagéecause each pattern references higher-level
solution. These relations form a hierarchical structungated

ing to the types of flow defined by thgeneral dataflow
o Network Usability Patterns address how humans can

other are much focused on implementation issues. Although

patterns describing the context in which it can be applied, (>
Multiple Window Circular Buffer

in Figure 6. The arcs between patterns represent “enables v

relations: introducing a pattern in the system enablesrothe

|

by having different types of module connections.
patterns Tokens life-cycle, ownership and memory man-
interact with dataflow networks.
Flow Implementation Patterns ‘
the catalog is not domain-complete, it can be considered a
and lower-level patterns can be used to further refine the
patterns to be used. \

/
/ Visual Prototyping Patterns ‘
complete dataflow system in an evolutionary fashion without x v/
Port Monitor

The catalog shows how to approach the development Of xuuwor Usabitiy Paterns

the need to ddig up-front designOn each decision, which l
will introduce more features and complexity, a recurre 1t -
problem is faced and addressed by one pattern in the language

Two of these patternSyped ConnectionsndPort Monitor,
are central to CLAM because they enable two key features of

the framework which are: One, the ports are typed but nf!} . 6. The multimedia dataflow pattern language. High-

restricted to a number of types and two, the processed dPe\gel patterns are on the top and the arrows represent the

can be visualized in real-time while keeping up with the k)d%rder in which design problems are being addressed by
free constraints of the processing thread. developers
an '

We shall now provide here a summarized version as
example of the kinds of patterns available in the cataloghis could imply, at least, that the connection entity would
Apart from their importance in the context of CLAM, wehave a maintainability problem.
have chosen these two patterns for another reason: They botRroblem: Connectible entities communicate typed tokens
have broad applicability beyond the specific context of olnut token types are not limited. Thus, how can a connection
framework. Complete versions of these and the rest of theaker do typed connections without knowing the types?

patterns can be found in the original catalog [9]. Forces:
« The processing thread is cost-sensitive and should avoid
4.4.1 Pattern: Typed Connections dynamic type checking and handling;

Context: Multimedia dataflow systems might need to manage * Connections are done at run-time by the user, so mis-

different kinds of tokens. In the audio domain we might Matches in the token type should be handled;

need to deal with audio buffers, spectra, spectral peakss Dynamic type handling is a complex and error prone

MFCC's, etc. Heterogeneous data could be handled in a Programming task, thus, placing it on the connection

generic way (common abstract class, void pointers...)tigt t ~ infrastructure is preferable than placing it on concrete

adds a dynamic type handling overhead to modules. Module Modules implementation;

programmers should have to deal with this complexity and+ The collection of token types evolves and grows and this

this is not desirable. It is better to directly provide thene t should not affect the infrastructure.

proper token type. Besides that, coupling the communicatio Solution:

channel between modules with the actual token type is goodSplit complementary ports interfaces into an abstractlleve

because this eases the channel internal buffers managemeniich is independent of the token-type, and a derived level
Using typed connections may imply that the entity thahat is coupled to the token-type. Let the connection maker

handles the connections should deal with all the possilplesty set the connections thorough the generic interface, whie t

13

ST Connection Maker [— -~I o Visualizations must be fluid; that means that it should
1
1

. visualize on time and often but it may skip tokens

" ! o The processing is not filling all the computation time
AbstractFemale v Solut_ion:_The solution is to encapsulate concurrency in
AbstractMale a special kind of process module, tRert monitor, that is
+bind (AbstractMale) . .
+isCompat ible (AbstractMale) +TokenType () () connected to the monitored out-pdPort monitorsoffers the
#doTypedBinding (AbstractMale) visualization thread a special interface to access tokere i
[ﬁ thread-safe way. Internally they have a lock-free datectire
frokemii ! Token: 1 which can be simpler than a lock-free circular buffer sirtue t
- Tc oken ===
Female [F--=7= Male visualization can skip tokens.
+isCompatible (AbstractMale) tokenType () To manage concurrency and avoid process stallingPtre
tdoTypedbinding (Abstracthiale) monitor uses two alternated buffers to copy tokens. In a given

time, one of them is the writing one and the other is the readin
Fig. 7. Class diagram of a canonical solution of Typed one. ThePort monitor state includes a flag that indicates
Connections which buffer is the writing one. Th&ort monitor execution

starts by switching the writing buffer and copying the cuatre
connected entities use the token-type coupled interface téiken there. Any access from the visualization thread, dock
communicate with each other. Access typed tokens from ttkge buffer switching flag. Port execution usedrs lock to
concrete module implementations using the typed interfaggvitch the buffer. So, the process thread is not blockeds it i
Figure 7 shows the class diagram for this solution. just writing on the same buffer while the visualization reld

Use run-time type checks when modules get connectér lock.

(binding tim§ to make sure that connected ports types are

Flag with mutex
(Graphical) Monitor

coupled sub-classes.

Consequences:The solution implies that the connection
maker is not coupled to token types. Only concrete modules
are coupled to the token types they use.

Type safety is ensured by checking the dynamic type at
binding time and relying on compile time type checks duringig. 8. A port monitor with its switching two buffers
T S e I g CTSSSUENGESSATIYG i e we minmize th

y%‘?OCkmg effect of concurrent access on two fronts. On one

bufferlng stru.cture.s can de-al with to_kens Ina wiser way Whesr?de, the processing thread never blocks. On the other, the
doing allocations, initializations, copies, etc. Conenetodules

. blocking time of the visualization thread is very reducesl, a
only have access to the static typed tokens. So, no dynari?'Snly lasts a single flag switching
type handling is needed. i

Unfortunately, the visualization thread may suffer stéiora
. risk. Not because the visualization thread will be blocked,
4.4.2 Pattern: Port Monitors but because it may be always reading from the same buffer.
Context: Some multimedia applications need to show a grapfhis may happen if every time the processing thread tries to
ical representation of tokens that are being produced byesogwitch the buffers, the visualization is blocking. Expede
module out-port. While the visualization only has soft regqu tells us that this effect is not critical and can be avoided
ments related to its smoothness, the process has real-tiblyeminimizing the time the visualization thread is accegsin
requirements. This normally requires splitting visudi@a tokens, for example, by copying and releasing them.
and processing into different threads, where the procgssin
thread is scheduled as a high-priority thread. But becsise b CONCLUSIONS: FRAMEWORKS GENERATE
non real-time monitoring must have access to the processD@®MAIN-SPECIFIC LANGUAGES

thread tokens some concurrency handling is needed and (s have presented a framework development process that aims
often implies locking in the two threads. _ at generating a domain-specific metamodel with associated
Problem: We need to graphically monitor tokens being progomain-specific languages and a pattern language. In most
cessed. How to do it without locking the real-time procegsin.ases it is unrealistic to deploy a DSL by designing a full-
while keeping the visualization fluid? fledged domain framework as there are easier and more
Forces: direct ways of obtaining the benefits of DSLs. However, our
o The processing has real-time requirements (i.e., Tipeoposal is the complementary: when designing a framework
process result must be calculated in a given time slot)you should aim at producing a DSL.

In-Band Process
(high-priority)

Out-of-Band Process
(low-priority)

1
compatible, and, once they are correctly conneqgpeacessing Honttoredport hreas bou:’dam : 7
time), rely only on compile-time type checks. To do that, the o : L
generic connection method on the abstract interfégend) y : 4
delegates the dynamic type checking to abstract methd Y 3o :"\@m'f‘:rg ,
(i sConpati bl e andt ypel d) implemented on token-type | } :

:

:

1

1

14

When building an application framework we are genefn this same company he is involved in activities related
alizing across a set of systems that belong to a particutar Software Architecture best-practices and Agile methods
domain. We aim at offering the tools and the conceptuél the same time, he is Associate Professor at Universitat
infrastructure needed to implement all those systems. A wePompeu Fabra, where he teaches Software Engineering and
designed framework is not just about reuse of code but alsdormation Retrieval. Previous to this, Dr. Amatriain was
about conceptual reuse: it should present a precise modeR&fsearch Director at University of California Santa Baabar
computation and a conceptual framework or domain metahere he lead research in immersive and virtual environsnent
model. The white-box components (i.e. base classes) of #med 3D Audio. He has been coordinating the CLAM project
framework are mainly responsible for it. for Audio and Multimedia processing since its inceptiontia t

Our process model is iterative but promotes the separurse of his PhD Thesis.
tion of concerns in three different workflows — framework,
metamodel, and patterns — and activities in three differd
phases — inception, construction, and formalization. tfeoto
derive our particular domain metamodel we need to perfor;
some initial analysis to identify basic requirements, ustind &
different viewpoints, and choose driving applications e t g
inception phase. But we cannot aim at understanding a
modeling the whole domain from the start. The framewo
development process is, as most software development, it-

erative by nature. Thus, just as the framework is iterativel pau Arum received the PhD degree in computing science
constructed, so should the metamodel and the pattern lgegugtom the Universitat Pompeu Fabra in 2009, and the MSc
be refined in each iteration. in computer science from the Universitat PAlitnica de
And once we have a stable domain metamodel, it Gatalunya in 2002. He is currently a researcher at Barcelona
fairly straightforward to provide associated domain-sf)@c Media audio group leading the development team and work-
languages. We have the concepts and constructs, all we i@t on real-time 3D audio systems. He where he has been
missing is an appropriate notation. The code, together witvolved in several industrial projects delivering sysein
the white-box and black-box components it allows to acceshe areas of 3D audio authoring tools, cinema exhibition and
can already be considered an initial — and low-level — DSkve events broadcasting. From 2000 to present he is one
Adding textual or visual concrete syntax to this well-defineof the core developer of the CLAM open-source framework.
metamodel is only an implementation detail. He is a professor of software engineering in the Technology
Our main conclusion is that any well-conducted framewolsepartment of the Universitat Pompeu Fabra. His interests
design process will produce a DSL. Therefore, just agclude dataflow-based real-time multimedia processing an
patterns generate architecturg4l], frameworks generate 3D audio technologies.
domain-specific languages

ACKNOWLEDGEMENTS REFERENCES

We would like to thank all developers of the CLAM frameworK1] M. Aksit, F. Marcelloni, and B. Tekinerdogan. Develogirobject-

oriented frameworks using domain modelsACM Comput. Sury.

who have participated in the process described in this paper
throughout the years. In particular we should mention thg
continuous contribution of David Garcia. Work in this paper
has been partially funded by an ICREA grant from the CatalH
Government, the Universitat Pompeu Fabra and Barcelopp
Media.

ABOUT THE AUTHORS

[20]

Xavier Amatriain is Research Scientist in Telefonica Re-11
search, where he currently leads research projects reIIate(ﬁ]
Web Mining, Social Networks and Recommender Systems.

page 11.

C. Alexander. The Timeless Way of Buildingdxford University Press,
1979.

X. Amatriain. Clam: A framework for audio and music apmgltion
development.|[EEE Software 24(1):82-85, Jan/Feb 2007.

X. Amatriain. A domain-specific metamodel for multimadprocessing
systems.|[EEE Transactions on Multimedi&®(6):1284 — 1298, 2007.
X. Amatriain, P. Arumi, and G. D. A framework for efficiersind rapid
development of cross-platform audio application&CM Multimedia
Systems14(1), 2008.

S. W. Ambler. Agile Model Driven Development Is Good EmgbulEEE
Software September 2003.

G. Arango. A brief introduction to domain analysis. BAC '94:
Proceedings of the 1994 ACM symposium on Applied compuytizges
42-46, New York, NY, USA, 1994. ACM.

P. Arumi and X. Amatriain. Time-triggered static schéahle dataflows
for multimedia systems. IRroceedings MMCNS 'Q2009.

P. Arumi, D. Garcia, and X. Amatriain. A dataflow patteanguage for
sound and music computing. Rroceedings of Pattern Languages of
Programming (PloP 06)2006.

P. Arumi, D. Garcia, T. Mateos, A. Garriga, and J. DuraReal-time
3d audio for digital cinema.The Journal of the Acoustical Society of
Americg 123(5):3937.

K. Beck and R. Johnson. Patterns Generate ArchitextureProceed-
ings of the 8th European Conference on Object-Oriented faragning
Bologna, Italy, 1994.

[12]

[13]

[14]

[15]
[16]

[17]

(18]

[19]

[20]
[21]

[22]

(23]
[24]
[25]
[26]
[27]

[28]

[29]

(30]

[31]

[32]
(33]
[34]

[35]

[36]

[37]

D. Bonachea, K. Fisher, A. Rogers, and F. Smith. Hancadiknguage
for processing very large-scale data. RbAN '99: Proceedings of the
2nd conference on Domain-specific languagpages 163-176, New
York, NY, USA, 1999. ACM.

J. Bosch, M. Molin, M. Mattson, and P. BengtssoBuilding Appli-
cation Frameworkschapter Object-oriented frameworks - Problems &
Experiences. Wiley and Sons, 1999.

F. Buschman, R. Meunier, H. Rohnert, P. Sommerlad, andSkAl.
Pattern-Oriented Software Architecture - A System of Radte John
Wiley & Sons, 1996.

J. Cleaveland. Building application generatd®sftware, IEEE5(4):25—
33, 1988.

S. Cook. Domain-specific modeling and model driven éeciture. MDA
Journal pages 2-10, January 2004.

T. R. G. Green and M. Petre. Usability analysis of vispadgramming
environments: A ’'cognitive dimensions’ frameworkournal of Visual
Languages and Computing(2):131-174, 1996.

P. Hudak. Building domain-specific embedded languageACM
Computing Survey=8, 1996.

E. E. Jacobsen, B. B. Kristensen, and P. Nowack. Cheniaittg patterns
in framework development. IfProceedings of the 25th International
Conference on Technology of Object-Oriented LanguagesSystems
1997.

R. E. Johnson. Documenting Frameworks with Pattemm&rbceedings
of OOPSLA '92 Vancouver, Canada, 1992.

R. E. Johnson and J. Foote. Designing Reusable Claskesnal of
Object Oriented ProgrammingdL(2):22—35, June/July 1988.

C. Larman. Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and the Unified Process (2ndidgdli
Prentice Hall PTR, July 2001.

E. Lee and T. Parks. Dataflow Process NetworksPioceedings of the
IEEE, volume 83, pages 773-799. 1995.

D. A. Manolescu. A Dataflow Pattern Language.Rroceedings of the
4th Pattern Languages of Programming Conferent@97.

S. J. Meller, A. M. Clark, and T. Futagami. Model Drivere@lopment.
IEEE Software September 2003.

M. Mernik, J. Heering, and A. M. Sloane. When and how tealep
domain-specific languageé&\CM Comput. Sury.2005.

W. Pree. Design Patterns for Object-Oriented Software Development
Addison-Wesley, 1995.

D. Roberts and R. Johnson. Evolve Frameworks into DorSgecific
Languages. IfProcedings of the 3rd International Conference on Pattern
Languages for Programmindvionticelli, IL, USA, September 1996.
D. Roberts and R. Johnson. Evolving frameworks: A patianguage
for developing object-oriented frameworks. Pnoceedings of the Third
Conference on Pattern Languages and Programmimume 3, 1996.
L. Sesera. Hierarchical patterns: A way to organizeafigsis) patterns.
Journal of Systemics, Cybernetics and Informat®@):37-40, 2005.
A. van Deursen. Domain-specific languages versus tbjeented
frameworks: A financial engineering case study.Simalltalk and Java
in Industry and Academia, STJA'9@ages 35-39, 1997.

A. van Deursen, P. Klint, and J. Visser. Domain-speddicguages: an
annotated bibliographySIGPLAN Not. 35(6):26—36, 2000.

J. Wang, X. Amatriain, and D. Garcia. Multilevel audiestription. In
Proc. of WWW '08

D. West. Metaphor, Architecture and XP. Rroceedings of the 2002
XP Conference2002.

S. Yacoub and H. Ammar. Pattern-Oriented Analysis and Design:
Composing Patterns to Design Software System&ddison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2003.

S. Zachariadis, C. Mascolo, and W. Emmerich. The satimmonent
system-a metamodel for engineering adaptable mobile regsttEEE
Transactions on Software Engineerjrg006.

M. Zelkowitz and D. Wallace. Experimental validation software
engineering. Information and Software Technolqg$9(11), November
1997.

